Optimum Urban Clear-Zone Distance

Christian R. Sax
Kimley-Horn and Associates
(former Iowa State University Graduate Student)

Thomas H. Maze, Ph.D., P.E.
Iowa State University
(deceased)

Reginald R. Souleyrette, Ph.D., P.E.
Iowa State University

Alicia L. Carriquiry, Ph.D.
Iowa State University

Presented at: TexITE Winter Meeting
January 29th, 2010
Frisco, TX

Study funded by the Iowa Highway Research Board

Why the Urban Clear-Zone Distance is Important

- Limited Right-of-Way Available
- Cost of Right-of-Way vs. Risk of Crashes
Presentation Outline

- Introduction
- Problem Statement
- Project Goals
- Research Plan
- Literature Review
- State Synthesis
- Data Collection
- Analysis
- Conclusions and Recommendations

Introduction

- Definition – Clear-Zone
 - The unobstructed, relatively flat area provided beyond the edge of the traveled way for the recovery of errant vehicles (AASHTO, Green Book)

- Omissions
 - Does not provide a specific clear zone width
 - Only provides guidance on an absolute recommended minimum clear zones dimensions
Problem Statement

Tendency for fixed object crashes to be more severe than other urban crash types

| Iowa Crashes, Average Annual Crashes from 2004 to 2006 |
|---------------------------------|---------|---------|---------|---------|-------|
| Total Crashes | Fatal | Major Injury | Minor Injury | Possible | Property Damage | Total |
| 380 | 1,643 | 5,488 | 10,263 | 39,756 | 57,540 |
| Urban Crashes* | 66 | 584 | 2,649 | 6,429 | 22,797 | 32,525 |
| Urban Fixed Object Crashes | 10 | 51 | 186 | 357 | 1,240 | 1,844 |
| % of all Crashes | 3% | 3% | 3% | 3% | 3% | 3% |
| % of all Urban Crashes | 15% | 9% | 7% | 6% | 5% | 6% |

*Urban crashes are those crashes that take place on curbed roads.

Project Goals

- The project was conducted in 2 Phases:
 1. Synthesis of practice
 2. Investigate the benefits of a 10 foot clear-zone

- Research Outcomes:
 - Provide guidance for when it is practical and cost effective to provide clear-zone less than 10 feet.
 - Help to clarify jurisdictions’ policies of clear-zone width.
Research Plan

- Literature Review
- Conduct a Synthesis of Practice
- Develop a Statistical Design
- Collect Data Elements and Generate a Project Database
- Conduct Analysis
- Final Report

State Synthesis

States Surveyed
- California
- Colorado
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Michigan
- Minnesota
- Missouri
- Nebraska
- Nevada
- North Carolina
- North Dakota
- Ohio
- Oregon
- South Dakota
- Texas
- Washington
- Wisconsin
Data Collection

- **Data Base**
 - 11 Corridors in Des Moines
 - 2 Corridors in Waterloo

- **Physical characteristics collected**
 - Longitude
 - Latitude
 - Fixed object type
 - Setback distance from curb
 - Roadway name
 - Speed limit
Data Collection

Segment
Block
15 Meter

Analysis

- Predictors
 - Minimum Setback
 - Average Setback
 - 15th Percentile Setback
 - Effect of Intersections
 - Violation of the Area-of-Influence
 - Speed Limit
 - Fixed Object Density
 - Cumulative Percent Crashes
 - Cumulative Percent Cost
 - Economic Evaluation
Analysis
Minimum and Average and 15th Percentile Setback Significance

Analysis
Intersection Significance

0 = 45 meter segment is within 45 meters of intersection
1 = 45 meter segment is not within 45 meters of intersection
Analysis

Violation of Area of Influence

A consistent clear zone distance decreases fixed object crashes

![Graph showing the relationship between average fixed object crashes per year and violation of area of influence.]

Analysis

Fixed Object Density

The fixed object density did not have an impact on the number of crashes

![Graphs showing the relationship between average fixed object crashes per year and density of fixed objects per mile for different density ranges.]
Analysis

Economic Evaluation

<table>
<thead>
<tr>
<th>Setback</th>
<th>Average Incremental Benefit from next lowest setback</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$40,123</td>
</tr>
<tr>
<td>3</td>
<td>$10,134</td>
</tr>
<tr>
<td>4</td>
<td>$3,772</td>
</tr>
<tr>
<td>5</td>
<td>$35,339</td>
</tr>
<tr>
<td>6</td>
<td>$8,350</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>$4,129</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$1,250</td>
</tr>
</tbody>
</table>

Analysis

Cumulative Percent Crashes

5 foot clear-zone is most effective
Conclusions and Recommendations

Summary of Findings

- Synthesis of practice
- Investigation of clear zone
 - Intersection is significant
 - Consistent clear-zone is important
 - Minimize number fixed object crashes = 5 ft clear zone
 - Minimize cost of fixed object crashes = 4 ft clear zone
 - Greatest incremental benefits at 2 and 5 ft

Conclusions and Recommendations

Policy Implications

- What is the optimal fixed object setback on urban curbed roads?
 - Natural break in crash frequency at 5 ft
Conclusions and Recommendations
Limitations and Future Research

- Data collection
 - Limited sample size
- Other Characteristics
 - Turning percentages
 - Access point density
 - Pedestrians

Questions?

This study was funded by the Iowa Highway Research Board. Opinions expressed are those of the authors and do not necessarily reflect the policies of the Iowa Department of Transportation or local units of Iowa Government represented by the Board. The authors wish to thank Neal Hawkins of the Center for Transportation Research at Iowa State University for his advice on data collection and general guidance.