Integrated Macro-Micro Modeling for Freeway Corridors – Sustainable Simulation Models

TexITE Winter Meeting

January 29, 2010

Jim Dale, PE, PTV America, Inc.

Talking Points

Macro-Micro (Multi-Resolution) Modeling Background

Project Application

> Background

> A Few Learning Experiences
 • Network
 • Demand

Findings + Future Vision
Multi-Resolution Modeling Background

- Match analysis question to right tool.

The Project – Background

Background
- **Title:** VISSIM Operational Corridor Model Development
- **Owner:** Oregon DOT
- **Location:** Portland, OR
- **Purpose:** Sustainable Simulation Models for Corridor Studies
- **Consulting Team:** PB (Prime), PTV (Sub)
- **Duration:** April – June 2009

Scope
- Develop calibrated VISSIM base models
 - 5 freeway corridors
 - 180 miles of directional freeway
 - 4-hour AM peak (6-10am)
 - 5-hour PM peak (2-7pm)
The Project – Challenge

Schedule
> How to develop calibrated microsimulation models for 180 miles of freeway and arterial ramp terminals for 9 hours of simulation within 3 months?

Data Management
> How to manage the tremendous amount of data?

Sustainability
> How to develop a workflow and models that can be used, expanded and maintained in the future?

The Project – Approach

Data Warehouse

- Regional Travel Model (OD, links, nodes)
- Portal
- PTV TCM
- Turning Movement Counts
- Signal Timing
- Aerials
- Network Geometry (ramps, turn bays, etc.)

Workflow

- One Data Warehouse
- Leverage Interfaces
- Sustainability

Integrated Macro-Micro Modeling for Freeway Corridors
The Project – Model Flow

Regional Travel Model
Regional Freeway Model

Integrated Macro-Micro Modeling for Freeway Corridors

Network

- Maintain network consistency.
Demand – Peak Spreading

Peak Spreading

> How to determine operational peak demand when ground counts are capacity constrained?

1. Synthesize 2-hr OD Matrices → Consistent Demand Data Set

2005 OD

2009 Uncongested Freeway + Ramp Detector Sites

2009 Counts

TFlowFuzzy (matrix estimation)
Integrated Macro-Micro Modeling for Freeway Corridors

2. Expand 2-hr to Multi-Hour Matrices → Capture Congestion

- Aggregate Flow Data at Uncongested Regional Sites
- Identify 2-hr Peak
- Apply Factor to 2-hr ODs

```
<table>
<thead>
<tr>
<th>Time</th>
<th>6:00</th>
<th>6:15</th>
<th>6:30</th>
<th>6:45</th>
<th>7:00</th>
<th>7:15</th>
<th>7:30</th>
<th>7:45</th>
<th>8:00</th>
<th>8:15</th>
<th>8:30</th>
<th>8:45</th>
<th>9:00</th>
<th>9:15</th>
<th>9:30</th>
<th>9:45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts</td>
<td>82390</td>
<td>104126</td>
<td>121503</td>
<td>124478</td>
<td>127535</td>
<td>129714</td>
<td>142216</td>
<td>153540</td>
<td>152483</td>
<td>155054</td>
<td>127604</td>
<td>124834</td>
<td>115205</td>
<td>119888</td>
<td>121205</td>
<td>119758</td>
</tr>
<tr>
<td>%</td>
<td>4.5%</td>
<td>5.7%</td>
<td>6.6%</td>
<td>6.8%</td>
<td>6.9%</td>
<td>7.2%</td>
<td>7.7%</td>
<td>7.9%</td>
<td>7.4%</td>
<td>6.8%</td>
<td>6.8%</td>
<td>6.8%</td>
<td>6.3%</td>
<td>6.5%</td>
<td>6.6%</td>
<td>6.5%</td>
</tr>
<tr>
<td>2-HR%</td>
<td>57.8%</td>
<td>55.3%</td>
<td>56.2%</td>
<td>55.9%</td>
<td>56.8%</td>
<td>56.6%</td>
<td>56.6%</td>
<td>56.7%</td>
<td>56.4%</td>
<td>56.8%</td>
<td>56.9%</td>
<td>56.5%</td>
<td>54.2%</td>
<td>54.5%</td>
<td>53.2%</td>
<td>53.5%</td>
</tr>
</tbody>
</table>
```

Demand – Peak Spreading

3. Expand Multi-Hour to 15-Minute Matrices → Peaking

- Aggregate Flow Data at Uncongested Corridor Sites
- Calc. 15-min %
- Apply %s to Multi-HR ODs

```
<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>OCC/ST</th>
<th>MIN</th>
<th>15MIN</th>
<th>15ST</th>
<th>1H</th>
<th>1ST</th>
<th>1H</th>
</tr>
</thead>
<tbody>
<tr>
<td>6:00</td>
<td>6:15</td>
<td>6:45</td>
<td>5:45</td>
<td>6:30</td>
<td>6:15</td>
<td>6:30</td>
<td>6:15</td>
<td>6:30</td>
</tr>
<tr>
<td>6:30</td>
<td>6:45</td>
<td>5:45</td>
<td>5:45</td>
<td>6:30</td>
<td>6:15</td>
<td>6:30</td>
<td>6:15</td>
<td>6:30</td>
</tr>
<tr>
<td>7:00</td>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
<tr>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
<tr>
<td>7:45</td>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
<tr>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
<tr>
<td>7:45</td>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
<tr>
<td>7:15</td>
<td>7:45</td>
<td>7:45</td>
<td>7:45</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
<td>7:15</td>
<td>7:30</td>
</tr>
</tbody>
</table>
```
Demand – Peak Spreading

4. Assign 15-Min Matrices then Export OD + Paths to VISSIM → Save Time

2009
AM 16, 15-min OD
PM 20, 15-min OD

Demand – Subarea Cut OD Adjustment

- Reduce OD trips between Zone 1 + 2 since outside study area.
Demand – Calibrating Paths

OR 217 SB Volume Comparison

<table>
<thead>
<tr>
<th>On/Off Ramp</th>
<th>Base Count</th>
<th>VISSIM Count</th>
<th>Difference</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>On ramp from 72nd</td>
<td>1606</td>
<td>1604</td>
<td>-2</td>
<td>-0.1%</td>
</tr>
<tr>
<td>Off ramp to 99W</td>
<td>2706</td>
<td>2803</td>
<td>97</td>
<td>3.6%</td>
</tr>
<tr>
<td>Off ramp to Greenburg</td>
<td>416</td>
<td>1102</td>
<td>686</td>
<td>166.6%</td>
</tr>
<tr>
<td>Off ramp to Hall</td>
<td>1125</td>
<td>1119</td>
<td>-6</td>
<td>-0.5%</td>
</tr>
<tr>
<td>Off ramp to 105</td>
<td>2067</td>
<td>2042</td>
<td>-25</td>
<td>-1.2%</td>
</tr>
<tr>
<td>Off ramp from OR-10</td>
<td>1861</td>
<td>1961</td>
<td>99</td>
<td>5.3%</td>
</tr>
<tr>
<td>Off ramp from Allen</td>
<td>1909</td>
<td>1191</td>
<td>-718</td>
<td>-37.2%</td>
</tr>
<tr>
<td>Off ramp from Allen</td>
<td>1909</td>
<td>1191</td>
<td>-718</td>
<td>-37.2%</td>
</tr>
<tr>
<td>Off ramp to 72nd</td>
<td>5503</td>
<td>522</td>
<td>-3981</td>
<td>-72.3%</td>
</tr>
<tr>
<td>Off ramp to Greenburg</td>
<td>522</td>
<td>474</td>
<td>-48</td>
<td>-9.2%</td>
</tr>
<tr>
<td>Off ramp from 72nd</td>
<td>42</td>
<td>43</td>
<td>1</td>
<td>2.4%</td>
</tr>
<tr>
<td>Off ramp to Allen</td>
<td>522</td>
<td>522</td>
<td>0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Off ramp to 72nd</td>
<td>57</td>
<td>57</td>
<td>0</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

The Result

VISSIM Calibration

- **Throughput**
- **Speed**

Integrated Macro-Micro Modeling for Freeway Corridors
Findings + Future Vision

1. Network geometry, volume and signal control coded and maintained in one platform.
2. Project completed within 3-month schedule.
3. Model workflow provided a method to maintain, expand and continue to use simulation models repeatedly.

Thank You
Control

The Project – Workflow

VISUM
Regional Travel Model
- Freeway Subarea Cut
- Synthesize 2-hr OD Matrices
- Factor to 4-5-hr OD Matrices

VISUM
Regional Freeway Model
- Corridor Subarea Cuts
- TAZs, Node Detail

VISUM
Corridor Macro-Models
- Factor to 15-minute OD Matrices
- Dynamic User Eq. 15-minute Paths
- Export to VISSIM

VISSIM
Corridor Micro-Models
- Micro Refinement + Calibration

MACRO
- Regional Network
- 2-hr AM, 2-hr PM
- 2-hr ODs + Paths

MICRO
- 5 Corridor Networks
- 4-hr AM, 5-hr PM
- 15-min ODs + Paths