

What is Bus Rapid Transit?

 "A flexible, rubber-tired from of rapid transit that combines stations, vehicles, services, running ways, and ITS elements into a fully integrated system with a strong image and identity" (TCRP Report 90)

6 Major Elements

- Running Way
- Stations
- Vehicles
- Fare Collection
- Intelligent Transportation Systems
- Service and Operating Plans

Why BRT?

Lower capital cost than LRT

1111

- More cost-efficient at certain ridership
- Ease, flexibility, and quick timeframe of implementation
- Incremental upgrades as desired/required

Cost Comparison

- Houston METRO's Southeast Corridor originally planned as LRT
- Concern regarding cost effectiveness
- Currently being designed as BRT-Convertible
- LRT infrastructure built in place; will be converted when ridership increases

Cost Comparisor	Cost	Comp	parison
-----------------	------	------	---------

		Build Alternatives with Wheeler-MLK Alignment Option		
ltem	LRT	BRT Convertible	BRT	
Guideway and Track Elements	\$45.1	\$46.0	\$22.0	
Stations, Stops, Terminals, Intermodal	\$18.8	\$19.4	\$19.4	
Support Facilities: Yards, Shops, Administrative Buildings	\$4.4	\$0.0	\$0.0	
Sitework and Special Conditions	\$61.8	\$28.0	\$27.7	
Communication Systems	\$41.6	\$21.7	\$21.7	
ROW, Land, Existing Improvements	\$20.0	\$12.04	\$12.4	
Vehicles	\$27.4	\$8.3	\$8.3	
Professional Services	\$79.3	\$37.2	\$29.4	
Unallocated Contingency	\$30.6	\$18.0	\$14.38	
Finance Charges	\$0.0	<u>\$0.0</u>	<u>\$0.0</u>	
Total Cost (2006) Dollars (Millions)	\$329.0	\$191.0	\$155.7	
Total Length in Miles	6.03	6.03	6.03	
Cost per Mile (2006) Dollars (Millions)	\$54.6	\$31.7	\$25.8	

Stages of Implementation

- Stage I
 - Mixed traffic on corridors and streets
 - Moderate operations management improvements
 - Some vehicle improvements
 - Improved stops

Stages of Implementation

- Stage II
 - Mixed traffic on expressway
 - Significant operations management improvements
 - Some vehicle improvements for ease of use
 - Upgraded stations and/or stops

Stages of Implementation

- Stage III
 - Semi-dedicated lanes
 - Significant operations management improvements
 - Some vehicle improvements for ease of use
 - Upgraded stations and stops

Stages of Implementation

- Stage IV
 - Dedicated lanes
 - Extensive operations management improvements
 - Vehicles designed for ease of access and comfort (multiple doors, interior configuration)
 - Advanced station design

Examples

- Curitiba
- L.A. Rapid
- Las Vegas MAX
- L.A. Orange Line
- Eugene-Springfield EmX

Curitiba (Brazil)

- Considered the first BRT (began in 1974)
- About 70% of population use bus system
- 37 miles of median busway in 2001
- Traffic signal priority (TSP)
- Avg speed: 12 mph

- 11,100 passengers in peak period, peak hour on busiest busway
- 188,000 passengers daily on busiest busway
- Up to 90 sec headway

Implications of BRT on Traffic Operations

- Impacts of running way (capacity, access, parking)
- Supporting signing and pavement markings
- Supporting traffic operational strategies (queue by-pass, signal phasing and priority)
- Pedestrian safety

Resources

- Characteristics of Bus Rapid Transit for Decision-Making
 - (http://www.fta.dot.gov/documents/CBRT.pdf)
- TCRP Report 90: Bus Rapid Transit
 (http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp_rpt___90v1.pdf and
 - http://onlinepubs.trb.org/onlinepubs/tcrp/tcrp rpt 90v2.pdf)