AUTOMATED TRAFFIC SIGNAL PERFORMANCE MEASURES

TEXITE SPRING MEETING – MAY 30, 2014

AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS

Jamie Mackey, Utah DOT

ITE Journal, March 2014

feature

Automated Traffic Signal Performance Measur

Learning Hub

Institute of Transportation Engineers

- TITLE: ACHIEVE YOUR AGENCY'S MEASURES-----
- DATE: Wednesday, April 9, 2014
- TIME: 12:00 p.m. 1:30 p.m. East

Helping Traffic Engineers Manage Data to Make Better Decisions

Automated Traffic Signal Performance Measures

BY DARCY BULLOCK, P.E., ROB CLAYTON, P.E., PTOE, JAMIE MACKEY, P.E., Steve Misgen, P.E., PTOE, Amanda Stevens, P.E., Jim Sturdevant, P.E., and Mark Taylor, P.E., PTOE

mproved signal operations with smooth and equitable traffic flow are goals for most traffic engineers; however the limited snapshot-view retiming methods that involve manual data collection, traffic signal modeling, and field fine-tuning are resource intensive and unresponsive to changes in traffic patterns. The National Transportation Operations Coalition's 2012 National Traffic Signal Report Card has led agencies to focus resources on these activities and develop methodologies to examine all the components of traffic signal operations.¹ These data-driven program management plans provide objective methods for identifying shortcomings and encourages coordination with neighboring jurisdictions. In addition, agencies need tools to prioritize activities when resources are constrained.

www.ite.org March 2014 83

PERFORMANCE MEASURES FOR TRAFFIC SIGNAL SYSTEMS

An Outcome-Oriented Approach

Christopher M. Day, Darcy M. Bullock, Howell Li, Stephen M. Remias, Alexander M. Hainen, Richard S. Freije, Amanda L. Stevens, James R. Sturdevant, and Thomas M. Brennan

SPM Basic Concept

Automated Data Collection

- Signal controller
- Probe source

Useful Information about Performance

- Signal
- Corridor
- System

Signal Performance Metrics

Log Action Taken

An AASHTO TIG-sponsored Technology

FAQ

Links

	C			
43	Sic	nal	Me	trics

Charts

udot.utah.gov

Reports

	00 West SR-201 Westbour	d		Metric Type	Ω.		
Metric Type	All All Signal Id	• •	Filter Clear Filter	 Approach Delay Approach Volume Approach Volume Arrivals On Red Purdue Coordination Diagram 		Termination	
Signal List Map WASHING ORIGON		NERRASKA KANSAS OKLANOMA	UNELAND LOCC SUPERIOR WISCONSIN ULINOTE INCOM MISSOURI MISSOURI TENNESSEE NORTH CANOLIN SOUTH CANOLIN	Y Axis Maximum Percentile Split Show Plan Stripes Show Ped Activity Upload Current D Dates Start Date 5/1/2014 End Date 5/1/2014 Reset Date Z7 4 11 18	May 2014 May 2014 Mon Tue Wed 28 29 30 5 6 7 12 13 14	ent Skip 	AM ·
bing		TRAS		18 25 1		22 23 24 29 30 31 5 6 7	

Create Metrics

http://udottraffic.utah.gov/signalperformancemetrics

.....

Reports

Log Action Taken

Agencies using UDOT software for SPMs

An AASHTO

Links

TIG-sponsored Technology

FAQ

http://udottraffic.utah.gov/signalperformancemetrics

System Requirements

High-resolution Controller

Communications

Can be done <u>independent</u> of a Central System!

Website

3) Store in Database

Photo courtesy of the Indiana Department of Transportation

Detection

(optional)

Controller Enumerations

Active Phase Events:

- 0 Phase On
- 1 Phase Begin Green
- 2 Phase Check
- 3 Phase Min Complete
- 4 Phase Gap Out
- 5 Phase Max Out
- 6 Phase Force Off
- 7 Phase Green Termination
- 8 Phase Begin Yellow Clearance
- 9 Phase End Yellow Clearance
- 10 Phase Begin Red Clearance
- 11 Phase End Red Clearance

Detector Events:

- 81 Detector Off
 - 82 Detector On
 - 83 Detector Restored
 - 84 Detector Fault- Other
 - 85 Detector Fault- Watchdog Fault
 - 86 Detector Fault- Open Loop Fault

Preemption Events:

- 101 Preempt Advance Warning Input
- 102 Preempt (Call) Input On
- 103 Preempt Gate Down Input Received
- 104 Preempt (Call) Input Off
- 105 Preempt Entry Started

http://docs.lib.purdue.edu/jtrpdata/3/

High-resolution Data

	Timestamp	Event Code	Event Parameter	
	6/27/2013 1:29:51.1	10	8	
Detector 5 ON	6/27/2013 1:29:51.1	82	5	
Deleciol 5 ON	6/27/2013 1:29:52.2	1	2	
	6/27/2013 1:29:52.2	1	6	
	6/27/2013 1:29:52.3	82	2	
	6/27/2013 1:29:52.8	82	4	
	6/27/2013 1:29:52.9	81	4	
	6/27/2013 1:29:53.3	81	6	
	6/27/2013 1:29:54.5	81	2	
	6/27/2013 1:30:02.2	8	2	
	6/27/2013 1:30:02.2	8	6	
	6/27/2013 1:30:02.2	33	2	
	6/27/2013 1:30:02.2	33	6	
	6/27/2013 1:30:02.2	32	2	
	6/27/2013 1:30:02.2	32	6	
	6/27/2013 1:30:06.1	10	2	
	6/27/2013 1:30:06.1	10	6	
	6/27/2013 1:30:08.1	1	8	
	6/27/2013 1:30:13.1	32	8	
Phase 8 GREEN	6/27/2013 1:30:15.8	81	5	
	6/27/2013 1:30:18.5	82	6	
Detector 5 OFF	6/27/2013 1:30:27.5	81	6	
	6/27/2013 1:30:30.4	8	8	

Performance Metrics Uses

Daily Operations

- Basic parameters
- Detection problems
- Complaint response/ troubleshooting
- Coordination
- Events, Incidents, Weather, & Construction
- Alerts

Reporting

- Prioritize signal needs
- Communicate system status to region/senior leaders and public
- Modeling/planning
 - Approach Volumes
 - Turning Movement Counts
 - Speed

Optimization with SPMs

Normal Intersection Example: Phase Termination Chart

8-phase signal with working detection

Maintenance Example: Nighttime detection problem

BEFORE: Video detection not working at night

Force off

Detection Requirements: None

Maintenance Example: Nighttime detection problem BEFORE: Video detection not working at night

Major Street (Ø2)

Minor Street (Ø4)

Detection Requirements: None

Maintenance Example: Nighttime detection problem

AFTER: New detection technology installed

Force off

Metric: Purdue Phase Termination Detection Requirements: None

Alert Example: 100% Max Out

Daily email at 7 a.m.

- Uses Purdue Phase Termination chart data
- Flags phases with >90% max-outs on each phase between 1 a.m. and 5 a.m.
- Compare to previous day's list. Only phases with new flags are sent in the email.

Metric: Purdue Phase Termination Detection Requirements: None

Metric: Purdue Coordination Diagram Detection Requirements: Advance

Offset Optimization Case Study

INDIANA 37

Offset Optimization - BEFORE

Offset Optimization – AFTER

Metrics & Detection Requirements

Controller high-resolution data only

Purdue Phase Termination Split Monitor

Advanced Count Detection (~400 ft behind stop bar)

Purdue Coordination Diagram Approach Volume Platoon Ratio Arrivals on Red

Approach Delay

Executive Summary Reports

Advanced Detection with Speed

Approach Speed

Lane-by-lane Count Detection

Turning Movement Counts

Lane-by-lane Presence Detection

Split Failure (future)

Probe Travel Time Data (GPS or Bluetooth)

Purdue Travel Time Diagram

Stop Bar Count Detectors

Wavetronix Matrix

- Used for turning movement counts
- Lane-by-lane detection zones in front of stop bar
- Requires detection rack card for every two zones (\$\$\$\$) or Click 650 Detector BIU

Automated Traffic Signal Performance Measures

Technology Implementation Group: 2013 Focus Technology

http://tig.transportation.org

Mission: Investing time and money to accelerate technology adoption by agencies nationwide

Find out more: http://tig.transportation.org

AASHTO TIG	TIG Home			
• TIG Home	AASHTO > AASHTO Technology Implementation Group > TIG Home			
About TIG	AASHTO > AASHTO Technology Implementation Group > TG home			
Focus Technologies				
• Executive Committee	AASHTO's Technology Implementation Group — or TIG — scans the horizon for outstanding ac technology and invests time and money to accelerate their adoption by agencies nationwide.			
Feedback	Each year. TIG selects a highly valuable, but largely unrecogni	ized procedure, process, software		
 Additionally Selected Technologies 	Each year, TIG selects a highly valuable, but largely unrecognized procedure, process, softw that has been adopted by at least one agency, is market ready and is available for use by o			
TIG-Solicitation	Guided by the vision of "a culture where rapid advancement and implementation of high payoff			
• Lead States Team Guidance 🕨	expectation of the transportation community," TIG's objectiv agencies, and their industry partners to improve the Nation's			
	Recently selected technologies with links to additional informa and Additionally Selected Technologies categorized by AASHT			
	Lead States Team Focus Technologies	Additionally Selected		
	2013 Focus Technologies	2013 ASTs		
	 Automated Traffic Signal Performance Measures UPlan Phase II 	Double Crossover Dia		
		Prior Four Years ASTs		
	Prior Four Years Focus Technologies	Anonymous Wireless		

Time Data Collection

Currenture Extension f

- Embedded Data Collector
- Environmental Planning GIS Tools.

Additional Information

UDOT Signal Performance Metrics http://udottraffic.utah.gov/ signalperformancemetrics

Purdue/INDOT JTRP Report → http://tinyurl.com/signalmoe

AASHTO TIG http://tig.transportation.org

PERFORMANCE MEASURES FOR TRAFFIC SIGNAL SYSTEMS

An Outcome-Oriented Approach

Distancement M. Day, Darcy M. Bulgott, Poreof LJ, Skytter M. Nerras, Alexander M. Harnett Richard S. Fryse, Actanda J. Stevens, James R. Shadewald, and Thomas M. Bercush