

Kirk Houser – City of Tyler Kent Kacir - Siemens

Adaptive Signal Control in Tyler Texas

June 16, 2007 Amarillo, TX

Agenda

- Transportation Planning and City Comprehensive Plan
- Description of the Corridor
- Operational Improvements
- Use of Adaptive Traffic Signal Control

Comprehensive Plan

2006-2007 City of Tyler Comprehensive Plan Update

- Public Survey Results:
- Traffic Congestion is #1 important issue for the City to address.
- Formed special Traffic Congestion/Transportation Tyler 21 Committee
- Adaptive Control identified as potential useful tool

Deployment Corridor -South Broadway (US 69)

Traffic Generators

 Tyler is regional retail hub in East Texas.

> Retail is most concentrated along S. Broadway Ave outside of Loop 323

 US 69 is the major North-South route thru region

Deployment Corridor -South Broadway (US 69)

SIEMENS

- Geometric Considerations
 - Tyler originally laid out as a 'hub and spoke' style city – streets are not on a grid
 - Side streets are irregularly spaced
- Existing Traffic Signal Infrastructure
 - Closed Loop Master
 - Hard wire 1200 baud communications
 - Mixture of Detector Loops and VIVDS

SE&A – ITS

Page 5

Traffic Operations

There is a need to do better

- Growing traffic delays are ranked #1 concern in Tyler – not uncommon everywhere.
- Signal timing updated frequently, but not fast enough.
- Corridor traffic flows smoothly at peak times, but there are unpredictable time periods due to commercial nature of corridor.
- Traditional timing plans are weak:
 - Weekends
 - Midday
 - Holidays

National Report Card

SE&A – ITS Page 7

Implementation Plan for Tyler SIEMENS

- Upgrade communications speed
 - Spread spectrum Ethernet radio complete
- Upgrade signal controllers
 - Needed only to increase speed to 56k existing controllers up to 19.2k – complete
- Add set-back detection
 - Chose side-fire radar construction underway
- Upgrade signal control software to include ACS-Lite module - underway

Page 8

SE&A – ITS

Goals for Adaptive Control SIEMENS in Tyler

Low cost design

Leverage existing infrastructure

- Standard US-style actuated controllers and logic (rings, phases, splits, barriers, gap-out/extension, etc.)
- Typical agency detector layouts
- Typical communications

Use NTCIP

Traffic Adaptive Control

- Low cost (relative) implementation
- Use of existing controllers (versions that support for NTCIP)
 - Siemens
 - Econolite
 - McCain
 - Peek
- Minimal detection
 - Use real-world tactical detection
 - Use stop bar detection, same as detection used for fully actuated traffic control.
 - Use advance detection
- Use common communication media
 - Copper, wireless, etc.
- Communication requirements are minimal
 - 9600 minimum
- Will support UDP/IP-based communications (i.e., Ethernet)

Example System Architecture

Detectors

- Relative flexible
- Detectors sized from 4' to 70'
- Stop line detection monitor volume and occupancy on green
- Advance detection monitor cyclic flow, identify arrivals of platoons, and are used to make adjustments to offsets to improve progression.
- No calibration required

Typical Detection Layout

Need detectors at stop-bar of coordinated phases for split tuning

Meeting June 16, 2007	SE&A – ITS	Page 13
J		

Adaptive Logic

- Monitors traffic signal operation
- Runs normal coordinated timing plans
- Then makes incremental adjustments to splits and offsets ~ 5 to 10 minutes.
- Cycle length is not changed (future)

Adaptive Logic (Cont.)

- Split adjustments are made based on measures of utilization of each phase.
- Adaptive logic estimates the degree of saturation for each phase.
- The adjustment logic reallocates green time from under saturated phases and gives it to the phases that need more time.
- Offset adjustments are based on cycle flow profiles (advance detection).
- Distributed logic: Each signal chooses the offset adjustment that maximizes traffic flow arrivals to the green lights.

Balance phase utilization on all splits

🖉 ACSLITE - Status - Microsoft Int	ternet Exp	lorer prov	ided by Si	emens	ITS													
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools	<u>H</u> elp																	1
🌀 Back 🝷 🐑 🔺 😰 🦿	🏠 🔎 Se	earch 쑭	Favorites	0	3- 🍯		📙 除 🛍 🕴	8										
Address 🕘 http://acslitememorial.dyndns.org:8080/acslite/status/phaseUtilization?controllerNumber=3 👽 🏹 🗸														» 🐔 -				
	monite Refresh · Phase Tin	Configuratio	on · Status	· Vers	ion « Profile	· Pattern H	listony - Detectors - 4	archive						Mer	2 norial	007-05- Drive - I	29 1 3:5 Houstor	7:12 1. TX
System Manager Comm Manager Time-of-Day Tuner	Controll Estimated	er 3 – Men d Controller	norial Dr. Time: 01:5	@ N. F 7:28 PM	viney Po	pint Dr	Instally Detectors P											
Run-Time Refiner Transition Manager Date/Time/Location Schedule	Pattern: 5 Phase Number	Number of Observation	<u>G</u> ap- ns outs	<u>M</u> ax- outs	<u>F</u> orce- offs	<u>O</u> mits/ Skips	Termination Timeline	Average Green Time (sec)	Average Green Occupancy (%)	Average Used Green (sec)	Average Available Green (sec)	Average Phase Utilization (%)	Degree of Saturation	Average Phase Demand (% time)	Min Split	Current Split	Max Split	THE SECOND
Day Plans	1	9 (100%)	0 (0%)	0 (0%)	0 (0%)	9 (100%)	0,0,0,0,0,0,0,0,0,0	. 0.1) 0%	0.00	25.0	0.0%		0.0%	12	14	31	
Event Log	2	9 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0,0,0,0,0,0,0,0,0,0,0	64.3	8 60%	38.78	64.3	60.1%		43.0%	22	42	255	
Security	5	9 (100%)	9 (100%) 0 (0%)	0 (0%)	0 (0%)	G,G,G,G,G,G,G,G,G,G,G,G,	. 8.3	8 98%	8.22	22.8	36.5%		9.1%	12	18	31	
CONTROLLERS	6	8 (100%)	0 (0%)	0 (0%)	8 (100%	5) 0 (0%)	F.F.F.F.F.F.F.F.	49.3	8 63%	31.57	49.3	63.1%		35.0%	22	38	255	
Memorial Dr. @ Blalock Dr.	8	9 (100%) 9 (100%)	9 (100%) 6 (66%)	0(0%)	0(0%)	3 (33%)		2.	05%	80.0 0 A 0	21.0	21.1%		0.2%	12	20	41	
Memorial Dr. @ N. Piney Point Dr	<u></u>	0 (100.0)	0 (0070)	0 (0/0/	0 (0.0)	10 (0070)			, 10/0	0.00	0.0	1.570	0.0	0.070				
Memorial Dr. @ San Felipe San Felipe @ Kinkaid Dr			Ø2		Ø1		Ø8	Ø7	-									
			$22 \leftarrow 4220 \leftarrow \Delta$	→ 54 → +12	12 ← -2 ←	$14 \rightarrow 31$ $\Delta \rightarrow +17$	$12 \leftarrow 14 \rightarrow 41 \\ -2 \leftarrow \Delta \rightarrow +27$	12	$\begin{array}{c} -20 \rightarrow 41 \\ -\Delta \rightarrow +21 \end{array}$									
LINKS	Ring 1 60.1% 0.0% Ø5 Ø6 $12 \leftarrow 18 \rightarrow 31$ $22 \leftarrow 38 \rightarrow 54$ $-6 \leftarrow \Delta \rightarrow +13$ $-16 \leftarrow \Delta \rightarrow +16$ 36.5% 63.1%							5% m o phase	27. s	<u>7%</u> Б								
	Ring 1 Ring 2					$34 \rightarrow 56$ $\Delta \rightarrow +22$ hases	þ											
	Barrier	Groups b	34 ← 56 -22 ← ∆ -	→ 66 → +10	24 ← -10 ←	$34 \rightarrow 56$ $\Delta \rightarrow +22$												~
<								J	_	_	_	_			1.444			>
é															0	Interne	t	
mooning	, oano	10, 20									0-0.					<u> </u>		

Adaptive Logic (Cont.)

- Offset adjustments are based on cycle flow profiles, which are compiled by monitoring advance loops on the approach.
- Offset adjustment logic considers only incremental changes.
- The logic is distributed in the sense that decisions are made at each signal independently.
- Each signal chooses the offset adjustment that maximizes traffic flow arrivals to green lights.

Traffic Adaptive Flow Profile

ACSLITE - Statu	us - Microso	o <mark>ft Intern</mark>	et Explorer	provided by Siem	ens ITS											_	
			Search) <i>A</i> . <u>R</u> . (w -	R> 4	4 .9	2								
			> Dearch				<u> </u>	<u> </u>							-		-
Address 🕑 http://ac	cslitememorial.	dyndns.org):8080/acslite/	status/flowProfile?cont	rollerNumber=2									<u> </u>	GO	Links "	
SLITE	monito	ring		2007-05-29 13:30:56 Memorial Drive - Houston, TX													
OULES	Refresh · C Phase Timir	onfiguratio ng ∙ Phase	on · <mark>Status</mark> e Utilization	 Version Flow Profile Patential 	ttern History · Dete	ctors · Archi	ve										
er er iner ner iager ation	Controller Local Time Detector 2 S 6 S Flow Prof	r 2 - Men :: Tue May Available Statistics R Statistics	norial Dr. (29, 2007 01 e data views un-Time His un-Time His nary	■ Blalock Dr. :30:59 PM tory tory													
	4	E٧	valuate Sele	cted Offset Adjustme	nt (seconds)												
	Link		Shifting the controller 2 offset by +T(-T) seconds shifts the start downstream green phases I														
≀S	All \rightarrow 2 Pat	ttern: 55 Q	ycle: 90	Offset: 38		0 5	10	15	20	25	30	35	40	45	50	55	61
@ Blalock Dr.	3 → 2 Ph	ase: 6 S	amples: 10-1	10 Percent Greens													
2 IN. Piney Point Dr 2 San Felipe	3 → 2 De	tector: 6 S	amples: 10-1	10 Occupancy (100%												н. Т	
linkaid Dr.	Link			Outbound	Shifting the	controlle	er 2 offs	et by +1	F(-T) sea	conds sl	hifts the	e outbo	und plat	toon ar	rival to o	down	
	$2 \rightarrow 3$ Pat	ttern: 55 Q	ycle: 90	Offset: 79	05	10	15	20	25	30	35	40	45	50	55	61	
	2 → 3 Ph	ase: 2 S	amples: 10-	10 Percent Greens						<u> </u>						_	
	2 → 3 De	tector: 2 S	amples: 10-	10 Occupancy (90%	Max, -1 Sec Shift)												hu 📗
	Inbound	Progresse (veh-sec o (per cycle	ed Flow floccupancy) () 3001 3740	Measured Flow (veh-sec occupancy) (per cycle) 3967 5566	Percent Measured Flow Progressed (per cycle) 75% 67%	1											
	Total		6742	9533	70%	6											
<																	~
														🔷 Tr	hernet		
IVIE	euna J	une i	0,200	/				_			3		<u>т — т</u>	13	connoc		

Expectations

- Purdue University Study results showed that this adaptive system ...
 - Significantly reduced delay for an arterial with non-updated timing.
 - No significant degradation to a system just re-timed using SYNCHRO.
- Sabra, Wang and Associates study results showed that, field studies in Ohio, Texas, Florida and California...
 - Average 22% reduction in delay
 - 29% reduction in stops
 - 8% reduction in fuel consumption

QUESTIONS ???