



# **Project Elements**

- Light Rail
  - Possible corridors for the 2<sup>nd</sup> transit mall
- Street Network
  - One-way to Two-way conversions
  - Closures
  - Enhancements
- Pedestrians
  - Pedestrian-way system

**JACOBS** 

3

## **CBD Network**



# Generacy County phone on Proposition First to expose a phone on Proposition First to exposition with a Processor of Date First to Exposition with a Processor o





# **Pedestrian Activity Forecast**

- Breakdown of collected data to activities created by
  - transit stations
  - · parking facilities
  - employment areas
  - · residential areas
  - · background activities
- Year 2030 forecast
  - 2030 land-use plan
  - proposed future station locations

**JACOBS** 

## **Other Data**

- Roadway lane configurations
  - field data
  - aerials
- Signal timing plans
  - City of Dallas
- On-street parking restrictions
  - City of Dallas
- Parking garage/lot locations, capacities, and access points
  - field data
  - · aerials
  - other data
- CBD districts



**JACOBS** 

Parking Facilities

JACOBS





# **Dynamic Assignment**

- Methodology advantages
  - time-dependent OD matrix as input
    - link with TDM data
    - network pre- and post-loading
  - vehicles are assigned routes
    - no circulating vehicles in the network
    - better lane-changing behavior
      - reduced bunching of turning vehicles at the intersections

**JACOBS** 







## **Traffic Demand**

- Demographics
  - alternate 2030 demographics
- TransCAD Sub-area analysis
  - provided by NCTCOG
    - 1999 OD on 1999 network
      - Create 2003 VISSIM OD
    - 1999 OD on 2030 network
      - effect of change in access points
    - 2030 OD on 2030 network
      - create 2030 VISSIM OD

**JACOBS** 

17

# **OD Adjustments**

- · OD modifications
  - actual zone access points
  - convert to VISSIM zone structure





**JACOBS** 







#### **Model Calibration**

- Methodologies
  - do nothing
  - static environments (TDMs) import routes
    - does not appropriately reflect the effect of
      - » traffic control devices
      - » train signal pre-emption
      - » pedestrian priority
    - limited number of calibration reference points
    - may result in drastic change of the original OD matrix
  - · dynamic environment
    - Iterative process
      - » can be partially to fully automated
    - Includes the effects of all traffic control devices

JACOBS

## **Model Calibration Implementation**

- Dynamic environment
  - 2003 network
    - based on 2003 collected turning movements
    - eliminate circuitous routes
    - apply cost/mile to balance usage of parallel roads
    - adjust OD matrix
  - 2030 network
    - routes change based on
      - » new demographics
      - » network modifications
    - eliminate circuitous routes found in the calibration step
    - check model convergence

JACOBS

## **2030 VISSIM Model Assumptions**

- Traffic signals
  - 80 seconds cycle length
  - LRT pre-emption
    - maximum pre-emption of 80 seconds
- Transit Operations
  - 5-minute headway on each LRT route
  - 2.5-minute headway on each transit-way mall
  - 30 seconds of dwell time at the LRT stations
  - 20 seconds of dwell time at the bus stations
  - bus routes along Main street re-routed along Elm street and commerce street
- · At-grade LRT crossing operations
  - FIFO (First-in First-out)

**JACOBS** 









# **2030 VISSIM Model Description**

#### Model 2:

- Base Roadway Geometry plus Roadway Improvements
- LRT
  - Pacific/Bryan Alignment (Existing)
  - North Griffin-Jackson
     Alignment (Alternative I)



**JACOBS** 

29

## **2030 VISSIM Model Description**

#### Model 3:

- Base Roadway Geometry
- LRT
  - Pacific/Bryan Alignment
  - North Griffin-San Jacinto Alignment (Alternative II)



**JACOBS** 

# **2030 VISSIM Model Description**

#### Model 4:

- Base Roadway Geometry
- LRT
  - Pacific/Bryan Alignment
  - South Griffin-Jackson-Pearl Alignment (Alternative III)



**JACOBS** 

31

## **2030 VISSIM Model Description**

#### Model 5:

- Base Roadway Geometry plus Roadway Improvements
- LRT
  - Pacific/Bryan Alignment (Existing)
  - North Griffin-Lamar-Jackson Alignment (Alternative IV)



**JACOBS** 

## Initial Findings (Common in all Models)

- Vehicular Traffic Flow
  - Capacity constraints at the intersection of Pearl and Central Expressway
  - Capacity constraints on eastbound Woodall Rodgers exit ramps at Pearl/Olive and Field/Griffin Streets

**JACOBS** 

33

## **Initial Model 1 Findings**

- LRT at-grade crossing (Common in Models 1 and 2)
  - Transit Operations
    - · Reduced LRT throughput
    - Increased LRT` travel time
    - Increased number of non-station stops
  - Vehicular Traffic Flow
    - Reduced capacity at Ross and Griffin Streets intersection
    - · Increased congestion on Elm and Main Streets
    - Increased congestion on Griffin and Lamar Streets

**JACOBS** 

## Initial Model 3 Findings (in Comparison to Model 1)

- Conversion of San Jacinto Street to Transit Mall
  - Transit Operations
    - Increased LRT throughput
    - · Reduced LRT travel time
    - Minimized non-station stops
  - Vehicular Traffic Flow
    - Increased congestion on Ross Avenue
    - Increased travel time on Ross Avenue
    - Reduced congestion on Elm and Main Streets

**JACOBS** 

25

## Initial Model 4 Findings (in Comparison to Model 1)

- LRT grade-separated crossing
  - Transit Operations
    - Grade-separation north of Pacific Avenue
    - Increased LRT throughput
    - · Reduced LRT travel time
    - Minimized non-station stops
  - Vehicular Traffic Flow
    - Increased congestion on Pearl, eastbound Main and Commerce Streets
    - Increased travel time on Pearl Street
    - Insignificant effect on Griffin Street operations

**JACOBS** 



## **Model 5 - General Findings**

#### Vehicular Traffic Flow



- Capacity constraints on eastbound Woodall Rodger exit ramps to Pearl/Olive and Field/Griffin Streets
- Capacity constraints on the westbound Woodall Rodgers Frontage Road at Field Street
- Capacity constraints at the portals in to CBD during the AM peak

JACOBS

## **Model 5 - General Findings**

#### Vehicular Traffic Flow

- Importance of Griffin and Pearl Streets in accommodating the inbound traffic to CBD
- No considerable negative impacts on the traffic flow as a result of the proposed Pearl Street and Central Expressway two-way configuration and the elimination of their current intersection
- Interruption of traffic flow on northbound Ervay Street in the AM peak hour created by the proposed two-way configuration between Elm street and Commerce street

**JACOBS** 

## Model 5 - General Findings

#### LRT Operations

- Effects of LRT station dwell time reduction from 45 to 30 seconds:
  - Train throughput only increased by 2 trains per hour to 79 trains per hour (compared to the Model 1 results of 77 trains per hour)
  - Train delay increased by 30% under signal pre-emption operation and shorter LRT station dwell time
  - Signal has to provide the cross-street with a minimum green time prior to providing right-of-way to the train for departure

#### Pedestrian Activities

- Dwell time reduction from 45 to 30 seconds:
  - · Less crossing opportunity for pedestrian at station locations
- Extensive pedestrian delays due to the frequency of the trains

JACOBS

#### **Model 5 – Findings**

#### The relocation of the LRT alignment to Lamar Street:

- Significantly improved the traffic operations along the Griffin Street corridor
- Significantly increased the vehicle throughput at the Lamar Street/Griffin Street exit ramp from eastbound Woodall Rodgers
- Significantly increased the capacity of the Griffin Street and Ross Street intersection (more movements allowed during the train crossing intervals)
- Reduced the pressure on Woodall Rodgers eastbound frontage road

**JACOBS** 

## **Model 5 – Findings**

- The relocation of the LRT alignment to Lamar Street:
  - Requires modifications to the west transit center to achieve the appropriate station length
  - Requires 4-lane right-of-way in the middle of Lamar Street
  - Traffic shift from Lamar Street to other parallel routes

**JACOBS** 

**JACOBS** 

41

# 







#### **LRT Corridor Recommendations**

- City Council adopted the Lamar / Field (NS) and Commerce / Young (EW) Corridor as the preferred corridor for the Second CBD Light Rail Line
- City Council recommended that DART proceeds into Alternatives Analysis with this corridor to identify the specific alignment
- City Council adopted a below-grade alignment at a minimum – between Ross and Commerce

**JACOBS** 





# **West End Area**



**JACOBS** 

# **At-Grade LRT Crossing**



JACOBS

# Pedestrian Crossing – Pacific & Lamar



# **Farmers Market Area**



**JACOBS** 





