Using Uneven Double Gycles
 - To lmprove the Effectiveness
 of Arterial Traffic Signal Operations

Wayne Kurfees, PE
Kimiey-Hom and Associates, Inc.
TexlliE Summer Meeting
June 15, 2007

Disclainer

- The subject project is funded by the U.S. Department of Transportation, the Texas Department of Transportation, and the participating cities.
- The contents of this presentation reflect the views and findings of the author who is responsible for the opinions, findings and conclusions presented herein. The contents do not necessarily refiect the views or policies of U.S. Department of Transportation, the Texas Department of Transportation, the North Central Texas Council of Governments, the City of Richardson, or the City of Garland.

Thoroughfare Assessment Program

- Client: NCTCOG
- Funding: 80\% CMAQ - 20\% Local
- Purpose: Reduce vehicular emissions through improved signal timing
- Scope
- Quantitative screening to select corridors
- Signal timing optimization
-57 "corridors" (48 linear and 9 grids)
$-1,500$ intersections
$\lrcorner 13$ operating agencies

JAP Gorridors in Greater Dallas

Richardson-Garland Group 1

< Kimley-Hom

Richardson-Garland Group 1

Richarolson-Garland Group 1

- 142 total intersections
- City of Garland
- 78 Intersections
- Siemens $i^{\text {TM }}$ system with 2070 controllers
- Citiy of Richardson
- 64 intersections
- Naztec StreetWise ${ }^{\text {TM }}$ system with TS2 controllers

Previous Timing in the Corsidor

- Cross-jurisolictional coordination since late " 80 s
- Good progression (north-south and east-west)
- Lead-lag phase sequences using
"Dallas" left-turn displays

Challenges for the Current Project

- Cycle lengtins were no longer adequate
- AM peak - 120 seconds
- Midday - 90 seconds
- PM peak - 128 seconds
- Moderately longer AM and PM peak cycles (135 to 144 seconds) were inherently not good for two-way progression

Adjacent corridors in Dallas and Plano were using cycle lengths of 160 seconds during AM and/or PM peaks

Advantages of the 160 -second Cycle

- Inherently accommodaties good two-way progression between the "major-major" intersections
- Typical travel times for one mile are between 85 and 90 seconds
- Substantially alleviaties congestion at the critical intersections

Disadvantages of the 160-second Cycle

- Bay length issues at some intersections
(particularly during the PM peak)

- Long wait times on the minor streets

Potential Mitigations for the Disadvantages

- Short bay lengths
- Lead-lag phase sequences
- Selective use of twice-per-cycle left-turn phasing
- Long minor street wait times
- Double-cycle as many of the minor intersections as possible

Limitations of the "Even" Double Cycle

- The width of the peak-direction green band often approaches the half cycle length
」 The progression bands rarely pass through the minor intersections at exactly the same time

Standard Phase Structures

Garland's Standard Phase Orientation for a Conventional, 8-Phase Intersection

Standard Phase Structures

Garland's Standard Phase Orientation and Ring and Barrier Structure for Uneven Double Cycling or Twice-Per-Cycle Left Turns

Kimley-Horn
and Associates, Inc.

Example 1: Twice-Per-Cycle Left

Double-Cycled Intersections During

 PM Peak 160-second Cycle

Kimley-Horn
and Associate and Associates, Inc.

Timing Plan Development Process

Thning Plan Development Process

- Use of Synchro ${ }^{\text {TM }}$
- V/C ratios can be used to determine the appropriate total split times

Jining Plan Development Process

- Use of Synchro ${ }^{\text {TM }}$
- After those steps, however, the process becomes manual

> ...but Synchro ${ }^{\text {TM }}$ is a very effective tool for visually evaluating manual adjustiments of phasing, sequence, and offset

Tining Plan Development Process

- Manual (and iterative) steps
- All intersections: adjust phase sequences and offisets to achieve optimum two-way progression (north-south and east west)
- Double-cycled intersections:
- Apportion the lengths of the two services of the through movements
- Select the association of the left-turn phases with the shorter or longer service of the through movements

Tinaing Plan Implementation Status

- Began in September 2006
- All 78 Garland intersections have been running new plans since February 2007
- Over 50 of Richardson's intersections currently running the new plans

Summary and Conclusions

- The longer AM and PM peak cycle lengtins have noticeably alleviaied congestion at the major intersections

Summary and Conclusions , cont

- The longer AM and PM peak cycle lengiths have noticeably alleviated congestion at the major intersections

Summary and ConcJusions, cont.

- In spite of the substantially longer background cycle lengths, the maximum wait times nave been reduced at most of the minor intersections
- Good citizen acceptance

> ...so far

