Regional Prioritization of Corridors for Traffic Signal Retiming

Sasanka Bhushan Pulipati

University of Texas at Arlington

Student presentations
TexITE Summer meeting, June 22-24, 2006, College Station, TX

Background

Signal retiming is a low cost alternative

Traffic signals need to be retimed periodically

Limited funding available

Lack of staff and other resources

Prioritization is necessary

Research Objectives

Understand various issues in traffic signal retiming

Identify current state of the practice for retiming project selection

Propose a new and more efficient strategy for prioritizing corridors for retiming

Traffic Signal Retiming - Benefits

Reduction in delay and number of stops

Less driver frustration -safer conditions

Reduction in fuel consumption

Improvement in air quality

Fewer diversions to local streets

Current Strategies - Outside DFW

Limited staff \& budget - No regular retiming

Retiming when

- Hardware upgraded
- Customer complaints
- Additional funds available
- Guidelines used in selection
- Traffic volumes
- Selection processes like CMAQ
- Time since last update
- Qualitative "congested corridor" classification

Current DFW Strategy

Regional programming

- Member cities submit candidate corridors

Two Approaches

- Ranking model
- More sophisticated
- Applied to travel time runs performed on corridors
- Group forum approach
- Expert group selects the projects

NCTCOG's ranking model - Variables

- Delay

DPV =Delay/vehicle/intersection = (Travel time - Desired travel time)
(number of intersections)
Total delay/ intersection $=$ DPV x ADT

- Number of Stops

Number of stops = (Number of stops/ number of intersections) x ADT

- System Type

1: complete connection
2: partial connection
3: Isolated

NCTCOG's ranking model - Expression

Total Score $(S)=\frac{\text { DELAY }}{\operatorname{Max}(\text { DELAY })} \times 50+\frac{\text { STOPS }}{\operatorname{Max}(\text { STOPS })} \times 30+$ SYSTEM_TYPE $\times 20$
Where SYSTEM_TYPE $=1.0 \quad$ for type 1
0.5 for type 2

0 for type 3

NCTCOG Ranking Model Application

Discussion on NCTCOG model

It is based on severity of existing conditions

Weighting given by expert group

Average delay/vehicle vs. Total delay

- System type plays important role
- Sensitivity analysis

Before and after studies - Retiming projects

- Travel time studies
- Just before implementation of retiming
- After adjustment of traffic to new timing
- Conducted to
- Measure effectiveness of improvements
- Document the results
- Instrument
- Jamar TDC-12
- Software
- Jamar PC-Travel

Great Southwest Pkwy corridor

Number of Lanes	4
Length	5.37 mi.
Number of signals	15
North End	E. Division Street
South End	Fairmont
Maximum Speed Limit	45 mph
Average Daily Traffic	20,328

Total corridor benefits -Great Southwest Pkwy

North Bound - Total savings in three years						
	\# of stops	Total Delay (Hours)	Fuel (gal)	HC (Tons)	CO (Tons)	NOx (Tons)
AM	1,380,709	69,905	49,172	5.1	46.5	0.5
MD	1,458,479	13,005	-5,338	-2.8	-42.1	-3.6
PM	1,173,302	40,419	25,377	3.6	24.2	1.4
South Bound - Total savings in three years						
AM	188,325	-5,115	-3,675	-0.2	-6.0	0.2
MD	1,400,873	16,916	1,063	1.9	3.9	1.1
PM	-7,003,211	-95,899	-41,393	-1.7	8.2	4.1
Texite summer meeting, College Station 13						

Pioneer Parkway corridor

Number of Lanes	6
Length	2.33 mi
Number of signals	8
West End	W. Freeway
East End	45 mph
Maximum Speed Limit	35,351
Average Daily Traffic	

Total corridor benefits -Pioneer Parkway

East Bound - Total savings in three years						
	\# of stops	Total Delay (Hours)	Fuel (gal)	HC (Tons)	CO (Tons)	NOx (Tons)
AM	$6,829,098$	75,172	81,744	15	127	12
MD	$12,638,158$	126,248	112,404	21	114	17
PM	$9,990,647$	103,120	99,136	20	119	16

West Bound - Total savings in three years

AM	$-1,276,598$	$-10,611$	$-16,717$	-2	-17	-2
MD	$-136,084$	3,651	$-38,920$	-6	-99	-6
PM	$6,264,081$	65,305	24,278	2	-41	0

Total daytime corridor benefits

	\# of stops	Total Delay (Hours)	Fuel (gal)	HC (Tons)	CO (Tons)	NOx (Tons)
Great Southwest Pkwy	$-1,401,524$	39,231	25,207	5.9	34.6	3.6
Pioneer Pkwy	$34,309,303$	362,886	261,926	49.3	204.6	36.2

Proposed Methodology

Based on societal benefits

Benefits modeled in terms of corridor characteristics

- Regression analysis (dependent variables)
> $S_{D}=$ Saving in delay (in sec)
$S_{F}=$ Saving in fuel consumption (in gallons)
> $S_{E}=$ Saving in NOx emissions (in Tons)

Set of Predictors

Physical characteristics	
Variable	Description
L	Length
N	Number of signals per mile
I	Spacing between the signalized intersections
Z	System type
Traffic Characteristics	
ADT	Average Daily Traffic
FFT	Free flow travel time
D	Delay
NS	Number of stops
M	Turning movements as a percentage of total volumes

Correlation matrix for independent variables

	$\begin{gathered} \text { Lengt } \\ \mathrm{h} \end{gathered}$	signal density	$\begin{aligned} & \text { st dev } \\ & \text { Sp } \end{aligned}$	ADT	$\begin{gathered} \text { FR } \\ \text { TIME } \end{gathered}$	$\begin{aligned} & \text { measur } \\ & \text { ed } \end{aligned}$	$\begin{gathered} \text { Total } \\ \text { delay/veh } \end{gathered}$	delay/veh /signal	delay/ve h/mile	\#Stops IVeh	\# Stops/ veh/signal	\#Stops/v eh/mile
Length	1.0											
signal density	-0.6	1.0										
st dev Sp	0.4	-0.6	1.0									
ADT	0.3	-0.1	-0.1	1.0								
FRTIME	0.9	-0.5	0.3	0.2	1.0							
measured TT	0.9	-0.5	0.4	0.1	0.9	1.0						
Total delay/veh	0.6	-0.2	0.3	-0.1	0.6	0.8	1.0					
delay/veh/sign al	-0.1	0.0	0.2	-0.6	-0.2	0.1	0.5	1.0				
delay/veh/mile	-0.5	0.8	-0.4	-0.4	-0.5	-0.4	0.1	0.6	1.0			
\# Stops/veh	0.71	-0.31	-0.09	0.03	0.70	0.85	0.88	0.25	-0.1	1.0		
\# Stops/veh/ signal	0.0	-0.1	0.3	-0.5	0.0	0.2	0.5	0.8	0.3	0.55	1.0	
\# Stops/veh/ mile	-0.5	0.8	-0.3	-0.4	-0.4	-0.3	0.1	0.5	0.9	0.07	0.5	1.0

Monetary Benefits

- Value of time (V_{D})
- \$8.39 per hour (estimate for DFW area)
- Fuel Price $\left(\mathrm{V}_{\mathrm{F}}\right)$
- American Automobile Association
- Value of $\mathrm{NO}_{\mathrm{x}}\left(\mathrm{V}_{\mathrm{E}}\right)$
- \$4750/ton per metric ton (TCEQ)

Overall Project Scores

- Project Benefit Score

$$
P B S=V_{D} * S_{D}+V_{F} * S_{F}+V_{E} * S_{E}
$$

- Weighted Project Benefit Score (WPBS)

$$
=W_{D} V_{D} S_{D}+W_{F} V_{F} S_{F}+W_{E} V_{E} S_{E}
$$

Where

$$
\mathrm{W}_{\mathrm{D}}, \mathrm{~W}_{\mathrm{F}} \text { and } \mathrm{W}_{\mathrm{E}} \text { are weightings }
$$

- Default value $\mathrm{W}_{\mathrm{D}}=\mathrm{W}_{\mathrm{F}}=\mathrm{W}_{\mathrm{E}}=1$
- Final order of priority is in the decreasing order of WPBS

Application of methodology

Conclusions and Recommendations

- Regular traffic signal retiming is recommended
- More corridors - less funds
- Prioritizing of retiming projects is necessary
- Current strategy based on severity of existing conditions is explained
- Estimation of benefits using before and after studies
- More efficient prioritization methodology using existing conditions to forecast potential benefits is proposed
- Next steps
- Estimate and validate the proposed model
- Additional research on value of the benefits

Questions?

Total corridor benefits

- AM, PM and OP hourly Turning movements
- Time of day

	AM Peak	Midday	PM Peak
Monday-Thursday	7AM to 9:30AM	11AM to 4 PM and 7PM to 9:30PM	4 PM to 7 PM
Friday	7AM to 9:30AM	11AM to 3 PM and 7PM to 11PM	3 PM to 7 PM

