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What We Learned from the Past

- Disaster scenario difficult to predict
« Oversaturated evacuation routes
e Too few routes
e Too much flow appear simultaneously
* Uncoordinated evacuees
« Destinations, departure times and routes
e Under-preparedness of gas stations, triages or shelters
e Too much circulating traffic
e Spillbacks to freeways
* Vehicle breakdown due to congestion and overheat

e Decisions in contra-flow was not based on system-wide impact
assessment

e Traffic spillbacks caused by contra-flow lanes
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What We Learned from the Past

Scenario-based preconceived plans at best relevant
for initial response, at worst useless

An optimal analysis platform is key in analyzing,
planning and implementing possible strategies in
case of evacuation
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Challenges of Emergency Evacuation

* Emergency evacuation is complex:

e Hazardous event dependent
e Lead times (e.g. no-notice vs. short-notice)
e Impact areas
e Extent of the evacuations, ...

» Evacuee and driver behavior unknown

* Challenges in communicating with and coordinating evacuees and
responders

e Needs multiple and flexible response strategies
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The Objective

* To develop a methodology integrating dynamic
traffic assignment (DTA) approaches for
evacuation modeling

* The major operation decisions to make
¢ Where? — Optimal destinations
* When ? — Phased evacuation times
e Which route? — Optimal evacuation routes
¢ How many at what time? — Optimal traffic assignment
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Cell Transmission Model

» Carlos F. Daganzo (1994):

e proposed hydrodynamic macroscopic traffic flow
simulation model called Cell Transmission Model (CTM)

» Athanasios K. Ziliaskopoulos (2000):
e Used CTM to formulate the SO DTA problem as a Linear

Program (LP)
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Joint Evacuation Destination-Route-Flow-Departure Time (JEDRFD) Problem
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Cell Transmission Model

Basic Characteristics of CTM

q=min{vk,qmax,w(kj—k)}, for Oskskj 1)

Equation of State
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T [ . source cell sink cell

ordinary cell diverging cell merging cell

Various Cell Types used in CTM

Density k i

Flow-Density Curve
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Single Destination Evacuation Modeling Concept

Node Arc to CTM Network Transformation

LP model in the Standard form:

Minimize CTX
s.t.
AX=bhb
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Case Study

Evacuation Zone ~

Evacuation flows:

Evacuation flowsr

Transformed Network:

*18 nodes, 32 links

« 5 origins, 3 destinations, 2 shelters

« 1 super-sink

« demand = 160 (nodel = 100, others = 15)

« one way links with max flow 4320 vph

Cell Network:

+108 cells, 138 connectors

« 5 origins cells, 3 destinations cells

« 2 shelter cells (capacity 20 veh. in each)
« 1 super-sink cell

« one clock tick = 5 secs.
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Case Study

Evacuation Zone  — —

~ n .
Fracuation lows Safe Zone * Rolling Horizon = 30 steps

....... « within 20 steps veh. reached shelter cells
N in capacity
...@ « within 28 steps all veh. reached the dest.

P « Dest. 15 received 43.3% of flow units

cactontons—e@Y /) B~ \NITT *Dest17 - 37.5%
*Dest 16 —19.2 %

Evacuation flows:

Flow distribution at origins

nodes| 1 2 3 4 5 6 7 8 9
1 50 50
2 35 65
3 55 45
4 33 77
5 50 50
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The Network:
13 Zones
200 Nodes and 445 links

Scenario:

82 origin nodes

2 destination nodes
Demand = 525 flow units
Super-sink Node = 201
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Dallas Ft. Worth-CTM

Cell Network:

82 origin cells
2 destination cells

1 super-sink cell

Rolling Horizon = 70 steps

(5.3 minutes)
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1953 Cells, 3084 Connectors

One clock tick (step) = 6 secs.

Flow units reached the destinations in 53 steps
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CTM and Dynasmart-P — Dallas Ft. Worth

SN Dynasmart — P CT™M
1 Maximum number of iterations 10 100
2 Current iterations 3 58
3 Total Vehicles 525 525
4 Max simulation intervals 500 70
5 Actual simulation intervals 122 53

Avg. trip distance (miles)

7 Average travel times (mins) 4.1451 2.9205
8 Total trip times (including entry queue time) 37.1165 27.0466
9 Avg. trip times (including entry queue time) (mins) 4.1036 3.0910
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Conclusion
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e The concept of single destination (super-sink) has been
successful for solving the evacuation related problems.

* Optimal solutions give the Emergency Management Agency (EMA)
an evacuation GOAL to target at, instead of using trial-and-error
approach

e Future research includes generating computationally efficient
tools for solving large networks
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Open Forum
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