Data Collection Applications

TexITE Fall meeting, 2014
Waco, TX
Data vs. Detection

- Current Practice (Common)
 - Presence detection
 - Designed in the 1970’s for use with traffic signal controllers
Data vs. Detection

- The rest of the story
 - Presence Detection is not enough
 - More information is needed to get an accurate picture of what is happening on the road
- Measures of effectiveness (MOEs) are tell the whole story
Measures of Effectiveness (MOEs)

- What are MOEs and what are they used for?
 - Measures of Effectiveness are data collection elements that can describe the characteristics of traffic movement or congestion
 - Can be collected for intersection and mid-block deployments on arterials or highways
 - Data types are typically counts, speed, occupancy, and travel times for individual lanes, approaches, or links
The need for MOE Data

- Moving Ahead for Progress in the 21st Century Act – “MAP 21” increased the need for MOEs
- Establishes a performance based program
 - Provides a means to more efficient investment of Federal transportation funds by focusing on national transportation goals
 - Increases the accountability and transparency of the Federal highway programs
- Establishes National Performance Goals for the Federal Highway Program
MAP 21 – Goals

- **Safety** - To achieve a significant reduction in traffic fatalities and serious injuries on all public roads
- **Infrastructure condition** - To maintain the highway infrastructure asset system in a state of good repair
- **Congestion reduction** - To achieve a significant reduction in congestion on the NHS
- **System reliability** - To improve the efficiency of the surface transportation system
MAP 21 – Intent

- States and local agencies establish Goals
- Federal government will monitor performance measurements to see if agencies are working toward their goals.
- Monitoring the condition of roadway system is a requirement
Who is interested?

- Engineering and Operations Community
 - Operating Agencies
 - Planning Agencies
 - Transit Agencies
 - Tolling Agencies
 - Traffic Engineering Consultants
 - Bridge and Tunnel Agencies
What Is It Used For?

- MOE data is the root information for various studies and analysis
 - Traffic planning for agencies and developers
 - Warrant studies
 - Red light running studies
 - And other studies that can benefit from collected data
Innovation for better mobility

How is Data Typically Collected

- Agencies / consultants typically hire people to conduct manual counts
 - On an annual or as-needed basis
 - During peak traffic periods only
 - Usually for only motor vehicles and not bicycles
- Floating car studies
How does Iteris fill the need?

A Variety of tools

- Vantage
- Vector
- Abacus
- Velocity
How does Iteris fill the need?

- **Vantage**
 - Volume, Speed, Occupancy
 - Turning Movement Counts
 - Why the TS2 IM
 - Not just for TS2
 - SDLC Cable can be connected directly into a TS1 (TS2 Type 2) controller

- **Vector**
- **Abacus**
- **Velocity**
Vantage Data Capabilities

- Takes advantage of existing infrastructure
- Turning movement counts
 - Agencies already pay for this service (typically every 3 years per location)
 - Our standard equipment can provide counts that are greater than 90% accurate
 - Increased accuracy by use of the TS2 IM (in TS1 Cabinet as well as TS2)
 - Data available in standard formats
- Provides counts 24/7
 - Data can be gathered after an incident to plan for next time
- Count budget already exists
 - Agencies can leverage other budgets
The three most important factors for good data

- Location
 » In front of oncoming traffic (limits adjacent lane occlusion)
- Location
 » As close to the camera as possible (limits same lane occlusion)
- Location
 » In unique travel paths
Sample Video
Bike Differentiation Example
Accuracy Of Vantage MOE Data

- Depends on camera placement, zone placement, and camera angle

<table>
<thead>
<tr>
<th>Data Elements</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counts</td>
<td>+/- 5%</td>
</tr>
<tr>
<td>Average Speed</td>
<td>+/- 3 MPH</td>
</tr>
<tr>
<td>Occupancy</td>
<td>+/- 3%</td>
</tr>
<tr>
<td>Classification</td>
<td>+/- 5 ft.</td>
</tr>
</tbody>
</table>
How To Retrieve MOE Data

- Typical communication method used
 - Null modem cable attached to a computer
 - GDI serial modems over twisted pair
 - Broadband wireless modems
 - Broadband wireless services
 - i.e. AT&T, Verizon
Iteris XPetrapro Software

Turning Movement Counts in a format that engineers expect
Sample CSO Chart
How do we fill that need?

- **Vantage**
- **Vector**
 - Volume, Speed, Occupancy
 - Turning Movement Counts
 - Why the TS2 IM
 - Not just for TS2
 - SDLC Cable can be connected directly into a TS1 (TS2 Type 2) controller
 - Individual Vehicle Speed
- **Abacus**
- **Velocity**
How do we fill the need?

- Vantage
- Vector
- **Abacus**
 - Takes advantage of existing infrastructure
 - Multiple functions
 - Collects Data 24 / 7
 - Per Lane Volume
 - Vehicle speeds
 - Incident Detection
 - Wrong way vehicle identification
- Velocity
How do we fill that need?

- Vantage
- Vector
- Abacus

Velocity
- Travel Times
 - Freeway
 - Arterial
 - Routes
Applications of Velocity

- Planning Agencies:
 - Input to the Congestion Monitoring Process
 - Planning model calibration
 - Origin-Destination studies

- Transit Agencies:
 - Fleet Tracking
 - Next Bus Arrival

- Multi-agency Leveraging – one reader, many uses

- Traffic Engineering / Consultants
 - Travel Time Studies
 - Delay Studies
Travel-time Technology Development

- Utilizes either Bluetooth or Wi-Fi
- Based on experience with AVI, a new read & process method was developed to increase efficiency and accuracy
- Asynchronous I/O – The Velocity Advantage
 - As soon as a MAC address is read it is uniquely sent for processing and time stamped (or stored locally)
- More Data
- More Accurate
Velocity – What is the Difference: Synchronous vs. Asynchronous

Synchronous: 8-10 second cycle (default process)

- 00:56:AF:33:21:00 07:15:31
- 22:00:00:DD:14:88 07:15:32
- 12:CD:AC:35:01:76 07:15:33
- 00:56:AF:33:21:00 07:15:35
- AE:42:39:00:01:06 07:15:38
- 07:33:CC:36:00:AE 07:15:40
- 00:56:AF:33:21:00 07:15:40

Asynchronous (unique to Post Oak)

- 00:56:AF:33:21:00 07:15:31
- 22:00:00:DD:14:88 07:15:32
- 12:CD:AC:35:01:76 07:15:33
- AF:10:EE:07:21:56 07:15:33
- 00:56:AF:33:21:00 07:15:35
- AE:42:39:00:01:06 07:15:38
- 23:00:00:00:AF:CC 07:15:38
- 07:33:CC:36:00:AE 07:15:40
- 00:56:AF:33:21:00 07:15:40
- CC:42:00:21:12:DD 07:15:40
Summary: Performance Measures with Iteris Data

- Tracking performance has become a requirement
- The need for data is greater than ever!
 - Iteris provides a variety of tools to meet these needs
 - Vantage
 - Vector
 - Abacus
 - Velocity
- The key to success – The right tool for the job