



### **Data Collection Applications**

TexITE Fall meeting, 2014 Waco, TX



### Data vs. Detection

- Current Practice (Common)
  - Presence detection
    - Designed in the 1970's for use with traffic signal controllers





### Data vs. Detection

- The rest of the story
  - Presence Detection is not enough
  - More information is needed to get an accurate picture of what is happening on the road
- Measures of effectiveness (MOEs) are tell the whole story





### **Measures of Effectiveness (MOEs)**

- What are MOEs and what are they used for?
  - Measures of Effectiveness are data collection elements that can describe the characteristics of traffic movement or congestion
  - Can be collected for intersection and mid-block deployments on arterials or highways
  - Data types are typically counts, speed, occupancy, and travel times for individual lanes, approaches, or links



### The need for MOE Data

- Moving Ahead for Progress in the 21<sup>st</sup> Century Act "MAP 21" increased the need for MOEs
- Establishes a performance based program
  - Provides a means to more efficient investment of Federal transportation funds by focusing on national transportation goals
  - Increases the accountability and transparency of the Federal highway programs
- Establishes National Performance Goals for the Federal Highway Program



### MAP 21 – Goals

- **Safety** To achieve a significant reduction in traffic fatalities and serious injuries on all public roads
- Infrastructure condition To maintain the highway infrastructure asset system in a state of good repair
- **Congestion reduction** To achieve a significant reduction in congestion on the NHS
- **System reliability** To improve the efficiency of the surface transportation system



### MAP 21 – Intent

- States and local agencies establish Goals
- Federal government will monitor performance measurements to see if agencies are working toward their goals.
- Monitoring the condition of roadway system is a requirement



### Who is interested?

- Engineering and Operations Community
  - Operating Agencies
  - Planning Agencies
  - Transit Agencies
  - Tolling Agencies
  - Traffic Engineering Consultants
  - Bridge and Tunnel Agencies



### What Is It Used For?

- MOE data is the root information for various studies and analysis
  - Traffic planning for agencies and developers
  - Warrant studies
  - Red light running studies
  - And other studies that can benefit from collected data





### How is Data Typically Collected

- Agencies / consultants typically hire people to conduct manual counts
  - On an annual or as-needed basis
  - During peak traffic periods only
  - Usually for only motor vehicles and not bicycles
- Floating car studies



Timelapse

Denominator



Jamar



### How does Iteris fill the need?

- A Variety of tools
- Vantage
- Vector
- Abacus
- Velocity



### How does Iteris fill the need?

- Vantage
  - Volume, Speed, Occupancy
  - Turning Movement Counts
    - Why the TS2 IM
    - Not just for TS2
      - SDLC Cable can be connected directly into a TS1 (TS2 Type 2) controller



- Vector
- Abacus
- Velocity



### **Vantage Data Capabilities**

- Takes advantage of existing infrastructure
- Turning movement counts
  - Agencies already pay for this service (typically every 3 years per location)
  - Our standard equipment can provide counts that are greater than 90% accurate
  - Increased accuracy by use of the TS2 IM (in TS1 Cabinet as well as TS2)
  - Data available in standard formats
- Provides counts 24/7
  - Data can be gathered after an incident to plan for next time
- Count budget already exists
  - Agencies can leverage other budgets



## The three most important factors good data



- Location
  - » In front of oncoming traffic (limits adjacent lane occlusion)
- Location
  - » As close to the camera as possible (limits same lane occlusion)
- Location
  - » In unique travel paths



### **Count Zone Placement**





### Sample Video





### **Bike Differentiation Example**





### Accuracy Of Vantage MOE Data

 Depends on camera placement, zone placement, and camera angle

| Data Elements  | Accuracy  |  |
|----------------|-----------|--|
| Counts         | +/- 5%    |  |
| Average Speed  | +/- 3 MPH |  |
| Occupancy      | +/- 3%    |  |
| Classification | +/- 5 ft. |  |



### How To Retrieve MOE Data

- Typical communication method used
  - Null modem cable attached to a computer
  - GDI serial modems over twisted pair
  - Broadband wireless modems
  - Broadband wireless services
    - i.e. AT&T, Verizon





### **Iteris XPetrapro Software**

**Turning Movement Counts in a format that engineers expect** 







### **Sample Count / Classification**





### Sample CSO Chart





### How do we fill that need?

- Vantage
- Vector
  - Volume, Speed, Occupancy
  - Turning Movement Counts
    - Why the TS2 IM
    - Not just for TS2
      - SDLC Cable can be connected directly into a TS1 (TS2 Type 2) controller
  - Individual Vehicle Speed
- Abacus
- Velocity







### How do we fill the need?

- Vantage
- Vector
- Abacus
  - Takes advantage of existing infrastructure
  - Multiple functions
    - Collects Data 24 / 7
      - Per Lane Volume
      - Vehicle speeds
    - Incident Detection
  - Wrong way vehicle identification
- Velocity



### How do we fill that need?

- Vantage
- Vector
- Abacus
- Velocity
  - Travel Times
    - Freeway
    - Arterial
    - Routes



### **Applications of Velocity**

- Planning Agencies:
  - Input to the Congestion Monitoring Process
  - Planning model calibration
  - Origin-Destination studies
- Transit Agencies:
  - Fleet Tracking
  - Next Bus Arrival
- Multi-agency Leveraging one reader, many uses
- Traffic Engineering / Consultants
  - Travel Time Studies
  - Delay Studies





### **Travel-time Technology Development**

- Utilizes either Bluetooth or Wi-Fi
- Based on experience with AVI, a new read & process method was developed to increase efficiency and accuracy
- Asynchronus I/O The Velocity Advantage
  - As soon as a MAC address is read it is uniquely sent for processing and time stamped (or stored locally)
- More Data
- More Accurate



### Velocity – What is the Difference: Synchronous vs. Asynchronous



#### **Synchronous: 8-10 second cycle (default process)**

00:56:AF:33:21:00 07:15:31 22:00:00:DD:14:88 07:15:32 12:CD:AC:35:01:76 07:15:33 42:33:23:EE:AE:07 07:15:33 00:56:AF:33:21:00 07:15:35 AE:42:39:00:01:06 07:15:38 07:33:CC:36:00:AE 07:15:40 00:56:AF:33:21:00 07:15:40





#### Asynchronous (unique to Post Oak)

| 00:56:AF:33:21:00 07:15:31            | 1                 |           |
|---------------------------------------|-------------------|-----------|
| 22:00:00:DD:14:88 07:15:32            | >                 |           |
| 12:CD:AC:35:01:76 07:15:33            | ~                 |           |
| 42:33:23:EE:AE:07 07:15:33            | $\rightarrow$     | HOST      |
| AF:10:EE:07:21:56 07:15:33            | $\longrightarrow$ | PROCESS   |
| <del>00:56:AF:33:21:00 07:15:35</del> |                   | (OR STORE |
| AE:42:39:00:01:06 07:15:38            | $\rightarrow$     | LOCALLY)  |
| 23:00:00:AF:CC 07:15:38               | >                 |           |
| 07:33:CC:36:00:AE 07:15:40            | $\rightarrow$     |           |
| <del>00:56:AF:33:21:00 07:15:40</del> |                   |           |
| CC:42:00:21:12:DD 07:15:40            | >                 |           |
|                                       |                   |           |

# Summary: Performance Measures with Iteris Data



- Tracking performance has become a requirement
- The need for data is greater than ever!
  - Iteris provides a variety of tools to meet these needs
    - Vantage
    - Vector
    - Abacus
    - Velocity
- The key to success The right tool for the job