Al-Powered Verification for Roadway Alignment Design Standards

 $\bullet \bullet \bullet$

Jason Wu, Ph.D. Shenghong Li, P.E., PTOE April 2, 2025

Outline

Introduction

Standards / Criteria Applied in Roadway Alignments

Demo of AI-Powered Verification of Roadway Design Standards

Brief Introduction of Other AI-Powered Applications

Summary and Key Takeaways

Q&A Session

Introduction

Common Critical Project Pain Points:

- 1. Tight Scheduling
- 2. Limited Alternative Solutions
- 3. Cross-Discipline Coordination and Communication
- 4. Resource Allocation
- 5. Criteria and Standards
- 6. Experience
- 7. Technology Learning Curve
- 8. Limited Automation
- 9. Data Collection and Analysis
- 10. Unbalance Workload and Manpower

Introduction

This presentation introduces a cutting-edge AI-powered solution that revolutionizes alignment verification. By automating the process, this technology can check and validate over 20 design criteria in minutes, regardless of project size. Key benefits include:

Instant Verification

Automatically re-verify alignments after every design change, ensuring accuracy without added effort.

Time Savings

Reduce verification time from weeks to minutes, accelerating project timelines.

Enhanced Consistency

Eliminate human error and ensure alignments consistently meet design standards.

Standards / Criteria Applied in Roadway Alignments

1. Min Horizontal Curve Length (L min = 3V)

- 2. Maximum Algebraic Difference Without Horizontal Curve(%)
- 3. K Value By Design Speed
- 4. Maximum Algebraic Difference Without Vertical Curve(%)
- 5. Min Grade (%)
 - Max Grade (%)
 - Min Vertical Curve Length (ft) $(L \min = 3V)$
- Minimum Horizontal Curve Radius
- Drainage Issue Profile Grade < 0.3% and Cross Slope = 0%
- 0. Vertical Headlight Sight Distance
- 1. Ratio of Flatter and Sharper Radius in Compound Curve (2:1)

- 2. Broken Back Curve Exists
- 13. Minimum Length of Circular Arcs for Compound Curve Radii
- 14. Minimum Edge-of-Pavement Grade (Curb=0.5%, Uncurb=0.2%)
- 5. Desired Maximum Relative Gradient
- 16. Short Tangent on A Crest between Two Horizontal Curves
- 17. Sharp Angle Appearance May Exist(AASHTO page 383 case E)
- 8. Disjointed Effect May Exist(AASHTO page 384 Case M)
- 9. Horizontal Alignment Curve Radius Round to
- 20. Vertical Alignment VPI Round to
- 21. Vertical Alignment Curve Length Round to
- 22. Stationing Goes from South to North or West to East

	Align	IIII Alignment and Profile Validation								-		×	
	Project	Interchange 1	~				Validate	Save		Print		Close	
Interface of Validation	Criteria					Alignme	nt						
	Select	Name		Threshold Value		Select	: A	Vignment		Pro	ofile		
Project Size: ~ \$1B		Min Horizontal Curve Length (ft)					820NMEA						
^v		Maximum Algebraic Difference	1		S20NMEA				820NMEAP		_	1	
# Alignments: 50		K Value By Design Speed				CRAIG							
Time Spend: ~ 1 min.		Drainage Issue - Profile Grade <				CRAIG			CRAIGP				
1 mie spend. ~ 1 mm.		Maximum Algebraic Difference	0.2			I820NBFRS1					_		
Total Time: ~ 10 min.		Min Grade (%)					I820NBFRS1	RS1		I820NBFRS1P		_	
		Max Grade (%)				☑ I820S1			1820S1P		_		
		Min Vertical Curve Length (ft) (L min = 3V)				I820S1						_	
		Vertical Headlight Sight Distance	e				I820SBFRS1						
							I820SBFRS1			1820SBFRS1P		_	
	Result												
		Alignment	Profile	Station	Criteria Threshold Va		nold Value	Current \	alue	11			
					_							_	

Interface of Validation

Standard Criteria Applied in the Project

	 Basic Information 	Segment Exception	n Criteria Checklist Preference Setting	Typical Sections		
	Name: Lan	820N			Set Road Li	imit? 1
e	- Roadway Charact					
	Category:	Ramp	Current Year: 2021	Design Vehicle:	WB-67	
	Function Class:	-	Current AADT: 3000	% Truck (current):	5	
	Terrian:	Flat	Design Year: 2041		45	
			-	Post Speed (mph)	45 50	
	Pavement Type:	-	Design AADT: 3000	Design Speed (mph)	DU	
	Geometric Design	Criteria				
			Criteria		Value	
	Horizontal Alignm	ient Criteria				
	Maximum Cu	rvature (Minimum Rad	lius) (ft)		833	
	Superelevati	on (e) Max (%)			6	
	Maximum Cu	rvature (Minimum Rad	lus) Without Superelevation (ft)		7870	
	Maximum Alg	ebraic Difference Wit	hout Horizontal Curve(%)		1	
	Vertical Alignmen	nt Criteria				
	Maximum Gr	adient (%)			5	
	Minimum Gra	dient (%)			0.5	
	Minimum K \	alue of Crest Vertical	Curve		84	
	Minimum K \	alue of Sag Vertical C	Curve		96	
	Max Algebra	ic Difference w/o Vert	tical Curve (%)		0.5	
	Vertical Clea	rance - Roadway (ft)			16.5	
	Vertical Clea	rance - Railroad Unde	erpass (ft)		16.5	_
	Vertical Clea	rance - Railroad Over,	pass (ft)		23.5	
	Cross Section C	iteria				
	Rotation Lar	es			0	_
	Lane Widths	(ft)				
	Inside Shoul					
	Inside Shoul					- 1
	Outside Sho					_
	Outside Sho	ulder Width (ft)				
	Normal Cross					- 1
	Clear Zone V					_
		Vithin Clear Zone *				_
		Outside Clear Zone *				- 1
		nier Offset (ft)				-
	Sidewalk Wi					_
		tter Type (Typ.)*				

Roadway: Lan820N

Roadway Mar Project Interchar Roadway 820N MEA Off F 820SLAN

> 820SROS HI 820 Segment 1820 NB Frontag 1820 SB Frontag

> Mea 820S On R Rose820N

🕑 🕲 🗽 🖈 🔂 🙂 🚱 🏘 🛑 🔍 💿 🚍 🔁 🏠 🙆 😰 🄁 🎿

OCD and Pavement Marking Guardrail Design Curb Ramp Pothole Cost Estimation Typical Section Roadway Calculation Criteria Management Roundabouts Tools Account Help

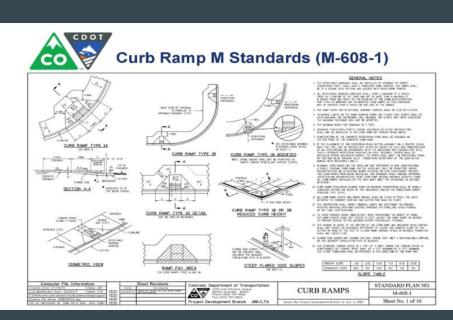
Demo

AI-Powered Validation Process

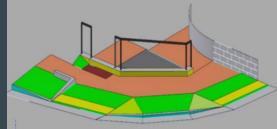
Company CESS LLC Account: Li Shenghong

Road Design Assistant

4


G

File Geometry



Other AI-Powered Automation Applications

ADA Curb Ramp Design Time from 60 hours to 3 hours

Challenges Facing Civil Engineers in Embracing Al

1. Job Security Concerns	 Like it or not, AI is here to stay. The best way forward is to embrace its presence and adapt by learning to use it effectively In the short term, AI cannot fully replace our work.
2. Resistance to Adopting New Technologies	No solution.Just try!
3. Skepticism Toward Al Reliability	 Start with minor commitments to the idea you're skeptical about and assess the outcomes. This can build confidence without feeling overwhelming.
4. Skill and Knowl e ge Gaps	• Engineers may not want to be the first person or company to use AI until it becomes more widespread.
5. Economic Impact	 The use of AI could disrupt traditional business models, potentially affecting how firms monetize their expertise and services.

Solutions of Concerns and Worries

1. Job Security Concerns

- Like it or not, AI is here to stay.
- The best way forward is to embrace its presence and adapt by learning to use it effectively. In the short term, AI cannot fully replace our work.

2. Resistance to Adopting New Technologies

• No solution; Just Try!

3. Skepticism Toward Al Reliability

- Start with minor commitments to the idea you're skeptical about and assess the outcomes.
- This can build confidence without feeling overwhelming.
- Apply logic and past experience to critically evaluate AI recommendations.
- For significant decisions, always reserve the option to rely on our own judgment.

Solutions of Concerns and Worries

4. Skill and Knowledge Gaps

Through our demo, we can see that understanding how AI works isn't a prerequisite, as all the interfaces are designed to be userfriendly and easy to operate.

5. Economic Impact

 Adapt business strategies to seamlessly integrate AI while capitalizing on the distinct value of human expertise to sustain a competitive advantage

Questions?

Jason Wu, Ph.D.

Assistant Program Manager/Associate Research Scientist

Texas A&M Transportation Institute

Email: JWu@tti.tamu.edu

Phone: 972994-2203

Shenghond_i, P.E., PTOE

CEO/Founder

CESS LLC

Email: info@cessllc.com

Phone: 720308-0988