Traffic Signals Retiming for Multimodal Safety and Efficiency – City of Houston

Presented by: Bharadwaj (Brad) Bommanayakanahalli & Tracy Zhou

Agenda

FSS

- 01 Project Goals
- 02 Study Area
- **03** Multimodal Facilities
- 04 Data Collection
- 05 Crash Data Analysis
- 06 Model Development
- 07 Existing & Proposed Timings
- **08** Other Recommendations
- 09 Next Steps

01 Project Goals

Goals

Improve **Safety and Efficiency** of Vehicles & Vulnerable Road Users

Improve **Signal Progression** along Coordinated Arterials

Recommend Other Improvements at Critical Intersections

02 Study Area

Project Limits

I-10 (North)

I-69/US 59 (South and East of Downtown)

I-45 (West of Downtown and North of Midtown)

SH Spur 527 (West of Midtown)

Multimodal Facilities

Existing & Programmed Bike Network

Exclusive bike lanes / shared-use paths with bike signals along:

- Austin St. (One-Way NB)
- Lamar St. (One-Way WB)
- Gray St. (One-Way WB)
- Bagby St. (Two-Way N-S)

Bike phases operate concurrently with vehicular phases

To reduce potential conflicts:

- Vehicle Turns are protected/restricted
 - Austin St. No RTOR via Protected RT on major streets or restrict RTOR on side streets
 - Gray St. No Turn on Red via protected left-turn phases
- Leading Bike-Interval (LBI) of 5-sec

Existing Bus & Light Rail Transit (LRT) Routes

- Red Line Main St. 6-min headway
- Green Line & Purple Line Capitol St. & Rusk St. 12-min headway
- LRT Preemption:
 - All signals along Red Line
 - Some signals along Green/Purple Lines
- Signals w/o preemption: concurrent LRT phases / exclusive LRT phase
- Separate signal heads for LRT phase
- City & METRO's effort in providing preemption

- ~ 50 Bus Routes through parts of Downtown & Midtown
- Bus-Only Lanes along Milam St. (SB) and Travis St. (NB)
- · No priority or separate signal heads for buses
- · Operations impacted on corridors with a lot of bus activities

04 Data Collection

Traffic Data

- **Field Observations** lane configuration, lane utilization, coordination, queue lengths, split failures, and spillbacks
- Traffic Volumes
 - Turning Movement Counts (TMCs) 2 hours in each peak (AM, Mid, PM & Sat) at 91 intersections in Apr & May 2024
 - TMCs at 29 additional intersections from 2022 & 2023
 - Weekday ADT data from City GIS site for 2022 & 2023
 - Tube Count Data on Saturdays at 81 locations 2024
 - Streetlight Data interpolate TMCs at locations w/o data
- Travel Time Runs (TTR)
 - Nine major N-S corridors & One major E-W corridor
 - Three TTRs in each peak
 - Tru-Traffic to interpret the travel time data

Challenges

- Coordinating staff to perform peak-hour observations for 394 intersections
- Observation days are restricted
- Available Weekday ADT data didn't match well with the collected TMCs
- Collected TMC + StreetLight Data ~~> TMCs (274 intsctns x 4 peaks x 3 mvmnts)
- Major sinks & sources (parking facilities)
- GPS data was spotty for some of the TTRs

Other Data

Signal Timings

- City of Houston ATMS system

Crash Data

- 5 Yr TxDOT CRIS data (2019-2023)

Bus-Stopping Rate

- Peak hour Ave bus-stopping rates calc from General Transit Feed Specification data (<u>https://gtfs.org/</u>).

Preemption Data

- 10 days of preempt data from ATMS
- Dynamic Parking Lanes

- TOD restricted parking info from ParkHouston and verified in StreetView.

Parking Restrictions by Time of Day

05 Crash Analysis

Crash Analysis Tool

С https://www.arcgis.com/apps/dashboards/6c73679b0b254c9c89dae06430fda218 ഹ

Source: https://www.arcgis.com/apps/dashboards/6c73679b0b254c9c89dae06430fda218

Crash Analysis Results

- Top Manner of Collisions: Single Veh Turning Left (>50%)
- Top Three Contributing Factors:
 - Failed to yield ROW to Ped/Bike (39%)
 - Disregard Stop & Go Signal (9%)
 - Pedestrian Failed to Yield ROW to Vehicle (7%)

- Top Manner of Collisions: Angle Both Thru Vehs (>14%)
- Top Three Contributing Factors:
 - Disregard Stop & Go Signal (43%)
 - Turned Improperly Wrong Lane (11%)
 - Failed to Control Speed (6%)

06 Model Development

PTV VISTRO Modeling

- HCM Methodologies for Performance Metrics (HCM 7th Edition Exhibit 19-11)
 - Traffic Characteristics
 - Geometric Design Data
 - Signal Control Data
 - Other Data Analysis Duration, Area Type
- Open Street Map for Starter
- Scenario Manager
 - AM, Midday, and PM Peaks
 - Saturday Peak

PTV VISTRO Modeling – Saturation Flow Rate Adjustment

- HCM 7th Edition, Exhibit 19-11
- RTOR flow rate Input as a %
- Platoon Ratio Input as Arrival Type
- Lane Utilization Factor
- Initial queue Input as initial queue delay
- **Parking Maneuver Rate** Parking on each side of the street separately
- Local Bus Stopping Rate

Adjustment Factors	Input Data and Parameter	Methodology of Identifying Input Values						
Lane Width	Average lane width for a movement	Aerial image measurement						
Heavy Vehicles	Percentage of heavy vehicles	Heavy vehicle volume divided by total volume of a movement						
Parking	Presence of on-street parking and parking maneuver rate	Field visit or aerial image measurement of number of parking spaces in 250 ft upstream of stop line: 6 maneuvers/hr for 10 parking spaces on two-way street or 11 maneuvers/hr for 20 parking spaces on one-way street.						
Bus Blockage	Bus stop rate	METRO Houston General Transit Feed Specification (GTFS) Data; vary by bus stop						
Area Type	CBD	CBD for both downtown and midtown intersections						
Lane Utilization	Number and volumes of exclusive lanes in a lane group	HCM Equation 19-7						
Left Turns	Left turn volumes	Percentage of left turns in a shared left turn lane						
Right Turns	Right turn volumes and right turn on red (RTOR) volumes, RTOR restrictions	Aerial image checking; percentage of right turns in a shared right turn lane.						
Pedestrians and Bikes	Pedestrian (bike) flow rate in the pedestrian (bike) service time and that in the subject crossing (in both directions), pedestrian (bike) service time, and phase effective green time.	HCM Section 2 of Chapter 31, Equation 31- 70 ~ Equation 31-74, and Equation 31-77. Pedestrians walk speed uses 3.0 fps.						

Spillback Adjustment & Initial Queue Delay Estimate

- Sustained Spillback observed in field
 - Vertical queuing assumption in VISTRO
 - HCM spillback adjustment factor

$$f_{sp,i,k,l} = \left(\frac{dv_{u,i,k}}{c_{u,i,k}}\right)^{0.5} \times f_{ms,i,k} \times f_{sp,i,k,l-1}$$

One fsp per approach allowed → fsp ~ [0.55, 0.95]

- Initial Queue observed in field
 - User input allowed one value per approach

$$d_{3} = \frac{3,600}{v T} \left(t_{A} \frac{Q_{b} + Q_{e} - Q_{eo}}{2} + \frac{Q_{e}^{2} - Q_{eo}^{2}}{2 c_{A}} - \frac{Q_{b}^{2}}{2 c_{A}} \right)$$
$$Q_{e} = Q_{b} + t_{A} (v - c_{A})$$

If $v \ge c_A$, then

$$Q_{eo} = T (v - c_A)$$
$$t_A = T$$

If
$$v < c_A$$
, then

$$Q_{eo} = 0.0$$
 veh
 $t_A = Q_b/(c_A - v) \le T$

07 Existing & Proposed Timings

Existing Timings

- The signals in Downtown and Midtown operate on a 90-second cycle and are pre-timed (No detection at most signals).
- Most of the signals have Ped Recalls and Restin-Walk active (No pushbuttons at most signals).
- The Time-of-Day schedule for most sites:
 - Weekday AM Peak Plan 5:30 AM to 9:30 AM
 - Weekday PM Peak Plan 3:00 PM to 7:30 PM
 - Off Peak Plan runs at other times on weekdays & weekends
- The existing coordination is primarily established for the N-S corridors and a few key E-W corridors.

Tru-Traffic Model

- Tru-Traffic is used to develop Time-Space Diagrams and optimize offsets to improve progression.
- Tru-Traffic was also used to collect travel time runs and plot the trip logs against the Time-Space Diagram.
- Utilized "Time-Shift" on Diagrams" function to line up the trip logs appropriately.
- Exclusive Train Phases were coded as "Exclusive Pedestrian Phases" in Tru-Traffic.
- Leading Pedestrian Interval (LPI) and Leading Bike Interval (LBI) were coded as increased All–Red in Tru-Traffic.

Proposed Pedestrian & Bike Timings Key Requirements

- A pedestrian walking speed of 3.5 fps will be used for developing the Walk phase timings.
- To improve pedestrian safety, a Leading Pedestrian Interval (LPI) of 4.0 seconds is proposed at select intersections, if deemed necessary.
- Based on City guidelines, Yellow can be considered part of Pedestrian clearance.
- Walk Time is between 4.0 sec and 6.0 sec for the entire grid.
- A Leading Bike Interval (LBI) of 4.0 seconds is proposed at intersections with bike signals, if deemed necessary.

LPI/LBI Provision Conditions

- Condition A: Presence of a Ped/Bike Signal
- **Condition B**: Ped/Bike phase going concurrently with a vehicular phase that allows a turning movement in a conflict path
- Consider LPI or LBI when both A and B met

LPI for Φ2?

LPI for $\Phi 8?$

	G: 2 26.0s		: 4 64.0s	
SG: 102	10.0s	SG: 104	16.0s	-8

Proposed Timings Considerations – Cycle Length

- First Iteration: 90-sec CL with LPIs coded, and splits reallocated.
- Additional Iterations: Reevaluate Cycle length (adjust lower or higher) based on current traffic patterns.
- Lower CL
 - Benefits
 - Potentially reduce delays for minor streets
 - Lower probability of queue spillbacks
 - Challenges
 - Lower flexibility for split adjustment
 - > At locations with LPIs, capacity reduction will be more than 10%
- Higher CL
 - Benefits
 - Minimize the impacts of incorporating LPIs
 - Higher flexibility for split adjustment
 - Challenges
 - > Typical block spacing of 330' in the Downtown grid

Cycle Length = 90 sec

Lost Time per Cycle (Existing) = 2 * 5 = 10 sec

Effective Green Time = 90 - 10 = 80 sec

With a 4.0 sec LPI on both phases

Effective Green Time = 90 - 10 - 2 * 4 = 72 sec

% Change in Capacity = $\frac{72 - 80}{80} * 100 = -10\%$

Additional Coordination Considerations

- Coordination Speed: A suitable coordination speed is crucial for efficient operations. The offsets will be designed for a speed of 25 mph in proposed conditions.
- Coordination will be **End-of-Green to End-of-Green** wherever feasible to ensure the block is clear for the side street vehicles to turn.
- Avoid platoons arriving in dilemma zones.

The proposed timings are under development and have not yet been implemented/fine-tuned in the field.

08 Other Recommendations

Other Recommendations

- Signal Head Upgrades
 - TMUTCD Compliance
 - Flashing Yellow Arrows to provide Prot + Perm left turn phasing
- Installing pedestrian pushbuttons to provide actuated pedestrian phases.
- Proposed new pedestrian overlaps at select intersections to satisfy the pedestrian split.
- Lane configuration changes proposing additional exclusive and/or shared turn lanes or removal of dual turn lanes.

09 Next Steps

Next Steps

- Finalize optimized timings.
- Timing implementation
 - Signals with ATMS connectivity vs Signals without connectivity
 - Implement timings in off-peak and overnight to minimize operations impacts
 - Activate the updated CL for one peak and evaluate its performance before activating it for other peaks
- Field fine-tuning of timings.
- Perform post-implementation travel time runs and compare the before-and-after timing implementation.

		-														-			73.84
1	Setup A Previe	. 60	Print 🔠 Export										Page 100 PM						
Alan	C Statur Lock	10	Name Dulles and Viting	10	Renno	2 Drog	E-NET-1002	Maiter	Plex sroup	Dulles Ave	NTCIP 41 x TS2 6themat	P Address 197, 568, 101, 200	CONCP IP	A Porference La	ock User Name TEAMS ID	TALL	FREE	2 Coord 1	10 1997
	ŏ		Dulles and Broadmoor	in		3.0	E-HET-5063			Dulles Are	NTCIP 61 x TS2 (Themet	192 148 181,200				1911	FREE		15
	õ	1	Dulles and Ave E	100		2	E-NET-5002			Dulles Ave	NTCP 41.xTS2 Ethemet	192.168 101.200				CROFREE	PREE	180	
	õ	6	Dullei and Lexington	1		21	E-NET-5002	E.C.		Dulles Ave	NTCIP 61.cTS2 Ethemet	192.168.101.200				COORD	SINC	8-19C	3
	õ	7	Dulle: and Plantation Colony	15		2	E-NET-5002	8		Dulles Ave	NTCIP 61.xTS2 Ethemet	197.568 101.200							
	õ	6	Dulles and Carburght	105		2	E-NET-5002	N		Dutes Ave	NTCIP &LxTS2 Ethemet	197.168.101.200							
	Ö	21	Bench 2070 V76 ENET - 21	12	76.184	3	8-NET-5003	. Br	ench Controlles		NTCP 76.x 2070 Ethemet	197.168.304.191				FREE	FREE		.0
	0	22	Bench 2070 V76 ENET - 22	10	76.8h	2.7	E-NET-5002	8	ench Controllers		NTCP 76.x 2010 Ethemet	197.168.104.192				FREE	PREE		15
	0	23	Dends NTCP TS2VKLx ENET - 23	10	62.46	3	E-NET-5003	B1	ench Controllers		NTCIP 41x752 Ethemet	192.168.104.193				CROFREE	FREE	TBC	0
	0	24	Bench ATC VTN ENET - 24	10	76.8 F	4	E-NET-5004	- B	ench-Controller:		NTCP 76.xAIC Ethemat	192.368.364.194				COORD	STNC	-8-TBC	2
	0	148	Bench 2078	12		2	E-NET-5002	6)			NTCP 45.x 2010 Ethemet	197.168.101.201				FREE	PARE		.0
	0	145	Bench TS2			3	E-NE7-5001				NTCIP \$1,cTS2 Ethemet	192.168.101.102				PREE	PREE		15
	0	150	NA and SHI	10		3	8-NET-5003			Hwy 35 System	NTCP 41x152 Rhemet	197.168.101.709				CROFREE	PAGE	TEC	. 0
	0	151	HA and Unith			3	8-HET-5003	6		Hwy 98 System	NTCIP 41.x152 (theovet	197.168.101.200				COORD	SINC	8-TBC	3
	0	157	36A and Brocks	.0		3	E-NET-1003			Hwy 99 System	NTCP #LxT52 [thenet	192.368.383.200							
	0	123	Brooks and Guerther			3.0	E-tiET-5003	13		Phay 90 System	HTCP #1x152 Ememet	192.368-101.200							
	0	154	SEA and Bayview	10			E-NET-5003	0.		Hwy 90 System	NTCIP \$1x752 Ethemet	192.168.101.200				PREE	PREE		
	0	155	36A and Savey			10	E-NET-5001	2		Intwy 30 System	NTCP-61x752 themet	192.568.101.200				FREE	FREE		- 15
_	0	156	96A and Eldridge	0		1	E-NET-5002			mwy 90 System	NTCP 61x TS2 Ethemet	197.168.101.200				CROFFEE	PREE	TRC	
	0	151	HA MELIGUINA	2		100	E-NE1-5003			Phuy 90 System	HICP &LX IS2 Ethemat	107.168.101.200				COORD	SHNC	B-TDC	
	0	100	the and Calify Arreard	-12		-	E-1421-3043			Hwy 39 Spitem	NULP SLATS2 Unemet	197.368.101.200							
	ő	140	Burrow and Visio	12		1	E-HET-5003			ning as three	NTCH 41 + TC2 Present	192 568 101 200							
183	-		- Participante in	-		-	\$714 C 21174				HEAP REALING CONTRACTS	101.311.013.CTV							
Neg in	100 0 00		1																
ert Alert	18																		
Set.	A Prestow APrint	1010	ut M Chur																
		-	liana Dese	Tital.et			Generation		Data/Time	Data									
o Chuite																			
Chanter		100																	

Contact Info

Bharadwaj (Brad) Bommanayakanahalli, P.E., PTOE. Traffic Engineer, HDR, Houston, TX <u>Bharadwaj.Bommanayakanahalli@hdrinc.com</u>

Tracy Zhou Ph.D., P.E. Traffic Project Manager, HDR, Houston TX <u>Hongmin.Zhou@hdrinc.com</u>

Questions?