TRAFFIC SIMULATION AND SAFETY ANALYSIS (TSSA) AND INTERSTATE ACCESS JUSTIFICATION REPORT (IAJR)

ITE HOUSTON CHAPTER
JULY 2021

by
Khalid Jamil, P.E. – Design Division
Agenda

- TSSA Program Overview
- IAJR SOP Overview
- Traffic Simulation/Analysis
- Safety Analysis
- Current Initiatives
TSSA Program - Background

Advancements in Traffic Analysis Procedures/Tools
- Limitations of HCM
- Microsimulations/MOE

AASHTO Highway Safety Manual
- Predictive Analysis
- Safety Analysis Tools

FHWA Review
- Quality of IAJR
- Quality of Design Exceptions

Need to Develop Expertise
- Traffic Simulation
- Safety Analysis
TSSA Program – Purpose/Functions

GUIDANCE
- Develop, interpret, and implement guidelines
- Coordinate, develop, and conduct training
- Provide technical expertise

SUPPORT
- Planning, scope, & traffic methodology
- Traffic simulation & safety analysis on select projects
- Review IAJRs & design exceptions

COORDINATION
- Meetings with FHWA
- Participate in District and Division Meetings

CONSULTANT MANAGEMENT
- Consultant contracts on selected projects
IAJR SOP Overview

- Introduction
- IAJR Process
- IAJR Methodology
- IAJR Report
- IAJR Re-evaluation
- Quality Control
IAJR SOP Introduction

Purpose
- Provide TxDOT Guidance based on FHWA Access Guide
- Provide consistent point of reference for Districts, DES, and FHWA (Tx Div)
- Improve probability and ease of acceptance by FHWA
- Clarify importance of early coordination with DES and FHWA

Legal Background
- Title 23, United States Code, Highway Section 111
 - State will not add any point of access w/o approval of Secretary USDOT
- Title 49, Code of Federal Regulation (CFR), Section 1.48
 - Secretary delegated the authority to FHWA

Policy Evolution
- FHWA Policy
 - October 22, 1990
 - February 1998
 - August 2009
 - May 2017
- TxDOT Policy
 - October 19, 2018 Memo
 - April 2020 – SOP Issued superseding 2018 memo
TxDOT’s Policy for IAJRs

- Incorporates the two updated points in the FHWA May 2017 Policy
 - Effects of revised access on Safety and Operations
 - Access, Connection and Design
- Retains the six points in the FHWA August 2009 Policy
 - Need
 - Alternatives
 - Consistency w/Local and Regional Plans
 - Potential future multiple Interchange additions
 - Coordination w/ Local Development/Transportation
 - Environmental Review Status
IAJR Process

Key Stages

PROJECT INITIATION
Need and Purpose
Methodology

COORDINATION
Traffic Forecast
Crash Data
Exist Cond
Benefits/Impacts
Access & Design
Recommendations

TRANSPORTATION ANALYSIS
Traffic Analysis
Safety Analysis

COORDINATION

REVIEW & APPROVAL
Draft Submission
Typical Average Schedule

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Methodology
Data Collection
Traffic Forecasting
Traffic Analysis
Safety Analysis
Draft Report
TxDOT Review
FHWA Review

Months to Complete
IAJR SOP Methodology – Early Coordination Meeting

- For the purpose of developing a technical approach for IAJR development
- Required for all projects with potential for IAJR
- District, DES, and FHWA should attend
- Initial determination of project reasonableness
- Attachment D provides a typical meeting agenda
- Meeting notes should be documented and included in the IAJR
- Additional meetings may be required for major/complex projects
Common Issues in IAJR

- Poor Need
- Not considering other Alternatives
- Insufficient Area of Influence
- Ignoring crossroads
- Unreasonable design volume
- Inappropriate traffic analysis tools selection
- Weak safety analysis
- Phased project implementation but no interim year analysis
- Documentation missing or provided too much
- Skimming in re-evaluation
IAJR Methodology

- Need
- Alternatives
- Area of Influence
- Analysis Years
- Analysis Periods
- Data Collection
- Traffic Forecasting
- Traffic Operational Analysis
- Safety Analysis
Area of Influence

- Area of Influence is the area impacted by the proposed change
- Factors to be considered
 - Area type
 - Interchange spacing
 - Extent of congestion
 - Anticipated traffic impacts
- Along Mainlane
 - In urban area, at least one adjacent interchange in either direction
 - In rural area, depends upon the interchange spacing
- Along Crossroad
 - ½ mile in either direction of proposed change
 - Crossroad of adjacent interchange usually not included
- A figure showing Area of Influence will be included in the report
Area of Influence (FHWA Guide)

- Project Limits
- Area of Influence Of Crossroad
- Area of Influence on Crossroad
- Area of Influence On Interstate
IAJR - Analysis Years

- Existing, Opening and Design Years required for each project.
 - Existing year analysis will only include existing conditions.
 - Opening and Design years will include both no-build and build conditions.
- Existing Year
 - Should be start of IAJR Analysis or
 - Preferably within 1 to 3 years from IAJR approval
- Design Year
 - Minimum 20 years after approval of final plans
 - Preferably, Opening + 20 years
- Opening Year
 - First year at which project is opened to traffic
 - For Phase construction, opening year of first phase
- Interim Year
 - Opening year of different phases
 - when design year shows failure
IAJR - Analysis Periods

- 30th highest hourly volume (design hour volume) minimum
- AM and PM peak hour may be required
- Existing 24-hr volumes should be evaluated to verify
 - Peak periods versus peak hours
 - Design Hour or K-factor
 - Peak hour selection
- For oversaturated conditions
 - Multi-hour peak period may be needed
 - 24-hr volume profile shall be evaluated
IAJR - Data Collection

- Data Collection
 - Roadway Geometry, Traffic Control
 - Traffic Count, Travel Time, etc
 - Crash Data
 - Summary of data collection

- Traffic Count
 - Weekday min. 48-hr
 - Classification count
 - Weekend (if required)
 - Where Microsimulation is used, one week or more for calibration
 - Actual traffic counts within 1 to 3 yrs of IAJR approval
Traffic Forecasting

- Traffic forecasting is complex and requires understanding of:
 - Land use
 - Demographics
 - Project location

- TxDOT Transportation Planning & Programming Division (TP&P) provides guidance and approval requirements

- TP&P-Traffic Analysis Section (TPP-T) SOP

- Three approaches to develop traffic forecasts:
 - Pivot/Trend Line/Growth Method
 - Based on historic growth
 - Travel Demand Model (TDM)
 - Utilizing MPO TDM
 - Comparing TDM output with traffic counts, land use
 - Hybrid Approach
 - Combination of TDM and Growth Factor
 - Start with TDM and adjust with growth factor
Traffic Forecasting Approval

TP&P provides three options for approval

- **Option A: TPP-T Development**
 - TPP-T develops and signs & seals

- **Option B: District and TPP-T Joint Development**
 - District/Consultant develop
 - TPP reviews and signs & seals

- **Option C: District Development**
 - District/Consultants develop
 - District reviews and signs & seals

A traffic projections/forecast memo is required
Design Consideration

Proposed Design should:

- Meet or exceed current design standards
- Not include partial interchange
- Only include access to public road

Design Exception (if required)

- Should be noted in the IAJR
- Request should be submitted separately

IAJR will include

- Design schematics i/c signing layout
- DSR showing design criteria
IAJR QC Checklist

Interstate Access Justification Report (IAJR)

Quality Control Checklist

<table>
<thead>
<tr>
<th>No</th>
<th>ITEM</th>
<th>Review</th>
</tr>
</thead>
</table>
| 1 | Methodology Coordination
Methodology Coordination Meeting (MCM) conducted and meeting minutes documented | |
| 2 | Report includes a project description along with a project location map | |
| 3 | Need and Purpose supported by data and justifies the project | |
| 4 | Area of influence includes adjacent interchanges & intersections as per MCM | |
| 5 | Analysis years per MCM | |
| 6 | If the project is to be implemented in phases | |
| 7 | Traffic Volume | |
| 8 | Existing traffic count data collected | |
| 9 | Traffic forecasts are developed per TPP guidelines and approved by TxDOT | |
| 10 | Traffic forecast methodology and assumptions memo is included | |
| 11 | If Travel demand model (TDM) used for traffic forecasting, TDM is latest/approved model | |
| 12 | Traffic forecasts are checked for reasonableness | |
| 13 | Traffic Analysis | |
| 14 | Traffic analysis tools selected per MCM | |
| 15 | Latest guidelines/standards have been used | |
| 16 | Study area type is Central Business District | |
| 17 | Existing and/or expected future traffic conditions is saturated | |
| 18 | A microsimulation tool was used, the report includes the calibration memo | |
| 19 | Measure of Effectiveness (MOE) are consistent with analysis tools and project settings | |
| 20 | The results of traffic analysis were reviewed for reasonableness | |
| 21 | The results of build year analysis show better or equal operational conditions | |
| 22 | The traffic analysis software files checked to verify input, and parameters | |
| 23 | Safety Analysis | |
| 24 | The safety analysis study area selected per MCM | |
| 25 | The historical crash data and analysis conducted for latest 4 years | |
| 26 | The safety analysis includes predicted crash frequency or evaluation of CMF | |
| 27 | Report | |
| 28 | Design schematic is included | |
| 29 | Signing plan is included | |
| 30 | The proposed project is consistent with State/MPO/local plan and documentation included | |
Traffic Simulation/Analysis

Scope and Approach depend on

- Area Type
 - Urban/Suburban/Rural
- Traffic conditions
 - Congested/un-congested
- Complexity of Project/Analysis Tools
 - Isolated/System interchange
- Selection of Analysis Tools
 - Measures of Effectiveness (MOEs)
 - Cost Effectiveness
 - FHWA Traffic Analysis Toolbox
Traffic Simulation/Analysis

- HCM-based Analysis Tools
 - Macroscopic & deterministic
 - Good for under-saturated flow
- Highway Capacity Software
 - Quick & reliable
 - Good for traditional analysis
 - Freeway facilities
- Synchro
 - Good for arterials
 - Signal optimization
- Sidra
 - Commonly used for roundabouts
Traffic Simulation/Analysis

- Microsimulation Analysis Tools
- Warranted for complex scenarios
 - Pros
 - Good for longer congestion
 - Good for system effect
 - Good for presentation
 - Cons
 - Data requirement
 - Time consuming
- Common microsimulation tools
 - CORSIM
 - VISSIM
Traffic Modeling Process

1. SCOPE
2. DATA COLLECTION
3. BASE MODEL
4. VERIFICATION
5. CALIBRATION
6. ALTERNATIVE ANALYSIS
7. DOCUMENTATION
Traffic Simulation/Analysis

- Analysis must be done for:
 - Each scenario
 - All analysis periods
 - Each study area segment

- Analysis should Identify:
 - Segments/intersections with unacceptable MOEs
 - Reasons for failing
 - Potential mitigating measures
 - Needed improvements within the study area
 - The effect of failure on Interstate Operation
Safety Analysis

Scope and Methodology

- Project type and Location
- Complexity
- Crash History
- Need and Purpose
- Safety Analysis Study Area
- Option A (Preferred)
 - Historical Crash Analysis and HSM Predictive Method
- Option B
 - Historical Crash Analysis and CMF Evaluation
Historical Crash Analysis

- Latest 3 to 5 years (Determined during Coordination Meeting)
- To identify or confirm safety problems
- Analysis should include
 - Crash Frequency by facility type for each year
 - Crash Severity by facility type for each year
 - Crash rates (to be compared with Statewide Average)
 - Primary contributing factors
 - Manner of collision for each year by time of day
 - Crash Diagram/High Accident Location
 - Heat maps/Bar Charts/GIS
Highway Safety Manual

- Quantitative Safety Analysis
- Predict crash frequency
- Similar to HCM

Part A
- Human Factors

Part B
- Safety Management Process

Part C
- Predictive Method

Part D
- Crash Modification Factors (CMF)
Safety Analysis

Part C Predictive Method

- Anticipated change in crash frequency
 - Function of traffic volume
 - Roadway characteristics
 - Crash Modification Factor (CMF)
- Safety Performance Functions (SPF)
- Common safety tools
 - Interactive Highway Safety Design Model (IHSDM)
 - Highway Safety Software (HSS)
- Spreadsheet based tools
Safety Analysis Study Area

- Area impacted by the proposed project
- Traffic analysis study area is a good starting point
- Depends upon the safety impacts of the proposed project
- Along Mainlane
 - Minimum One adjacent interchange on either side of proposed change
- Along Crossroad
 - One-half mile from the ramp terminal
- Sample Area of Influence
Current Initiatives

- Traffic and Safety Analysis Manual (TSAP)
- Safety Scoring Tool
- Design Exception SOP
- Intersection Framework
- Highway safety manual implementation
 - Texas specific SPFs and calibration factors
 - Participation in FHWA DDSA EDC5
 - NCHRP panel
- Training
- Roadway Safety Assessment (RSA)
- Microsimulation toolbox (Future)
TSAP Manual Development Process

We Are Here

1. **Work Authorization Executed**
 - Kickoff Meeting Held

2. **Technical Advisory Committee**
 - Literature Review
 - Chapter Outlines

3. **Develop Chapter Contents**
 - Review by Technical Content Reviewers

4. **Develop Initial Draft**
 - Review by TAC & FHWA

5. **Develop Final Draft**
 - Rollout for Six Months Trial Period

6. **Conduct Workshops**
 - Feedback from Districts

7. **Publish Final Version**

Traffic Simulation & Safety Analysis Section (TSSAS)
Purpose is to assist designers in making safety-driven decisions during the project development and design process

- Rural 2-lane & Rural multi-lane tools available
- Intersection tool under development

The Rural scoring tools should be used on applicable projects

Districts are expected to submit the initial and final safety score on applicable projects - effective as of the April 2020 letting.

Scores are reported through Administration to Commission for each letting month

Tools, instructions, FAQ’s and videos are all posted on the DES Webpage
Rural Scoring Tools - Eligibility Matrix as of May 2020

<table>
<thead>
<tr>
<th>Scope of Work</th>
<th>Scoring Tool Applies</th>
<th>Scoring Tool Currently Exempt</th>
<th>SII Applies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added Capacity/Mobility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Rehab/widening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Replacements (On System)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge widening/major rehab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seal Coats/Overlays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full Depth Repair (Spot locations only)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersections/Intersection work</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Signals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacing existing signs/striping</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any Urban facility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rural Interstate, Freeway or Frontage Roads</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Maintenance/Repair</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shared Use/Bike Path</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridge Replacements (Off System)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 8 Widening projects (all)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Category 8 HSIP (non-widening)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RTZ projects are reported separately
Safety Analysis and Design

- Traditional or Nominal Safety
- DDSA or Substantive Safety
- Anticipated change in crash frequency
 - Function of traffic volume
 - Roadway characteristics
 - Crash Modification Factor (CMF)
Purpose of Safety Scoring Tool

- Incorporate Safety in the project design process
- Understand the Safety effect
- Simple and Straightforward

- 42%
 1V:3
 H

- 22%
 1V:4
 H
 1V:6H
Safety Scoring Tool Approach

- Basic Approach
- Comparing Alternates
- Roadway Element Categories
- Summary of Scoring Procedures
Safety Scoring Tool Approach

- Basic Approach
- Comparing Alternatives

Increasing safety

- Existing Conditions
- Project Designed to Standards
- Design Alt. 1
- Design Alt. 2
- Optimal Design for Safety
Roadway Element Categories

Geometric
40 points
- e.g., Shoulder and Lane Width
 Curvature

Baseline for Safety (e.g., sharp vs. flat curve)

Traffic
20 points
- e.g., Markings
 Signs
 Access Management

Improves Safety by helping drivers stay on the road

Access Management

Roadside
40 points
- e.g., Clear Zone
 Sideslope
 Barriers

Mitigate consequences of departing the road

Based on a maximum total score of 100
Summary of Scoring Procedure

1. **Split projects into segments**
2. **Analyze safety effects of individual elements**
3. **Combine element effects into category score**
4. **Weight categories for segment scores**
5. **Combine Segment scores for project score**
Questions?

Feedback

Contact

Khalid Jamil, P.E.

(512) 486-5171

Khalid.jamil@txdot.gov