

TRAFFIC SIMULATION AND SAFETY ANALYSIS (TSSA) AND INTERSTATE ACCESS JUSTIFICATION REPORT (IAJR)

ITE HOUSTON CHAPTER JULY 2021

Khalid Jamil, P.E. – Design Division

July 2021

- TSSA Program Overview
- > IAJR SOP Overview
- Traffic Simulation/ Analysis
- Safety Analysis
- Current Initiatives

TSSA Program - Background

TSSA Program – Purpose/Functions

GUIDANCE	 Develop, interpret, and implement guidelines Coordinate, develop, and conduct training
	Provide technical expertise
SUPPORT	 Planning, scope, & traffic methodology
	 Traffic simulation & safety analysis on select
	projects
	 Review IAJRs & design exceptions
COORDINATION	Meetings with FHWA
	 Participate in District and Division Meetings
CONSULTANT MANAGENT	 Consultant contracts on selected projects

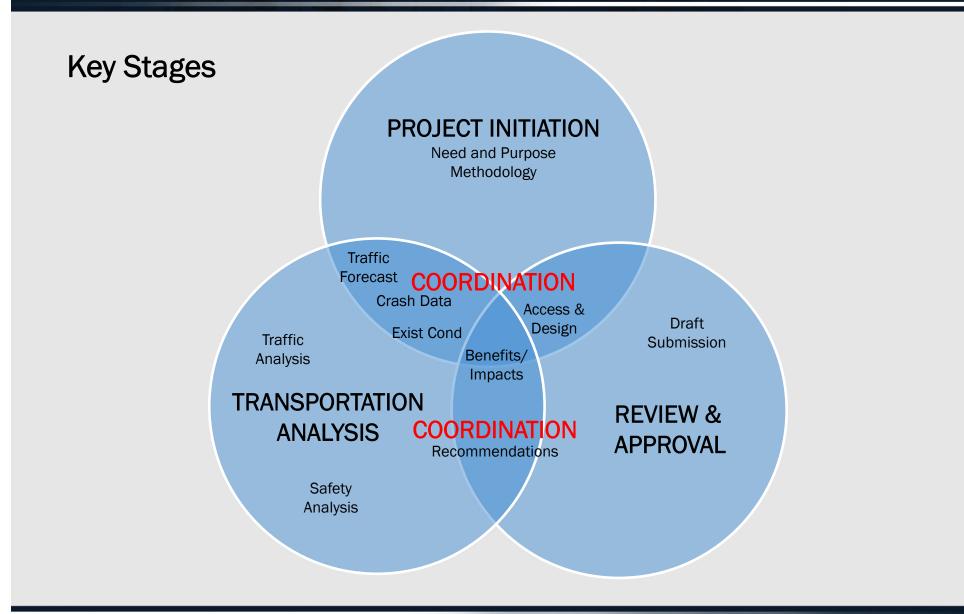
IAJR SOP Overview

- Introduction
- > IAJR Process
- IAJR Methodology
- ➢ IAJR Report
- IAJR Re-evaluation
- Quality Control

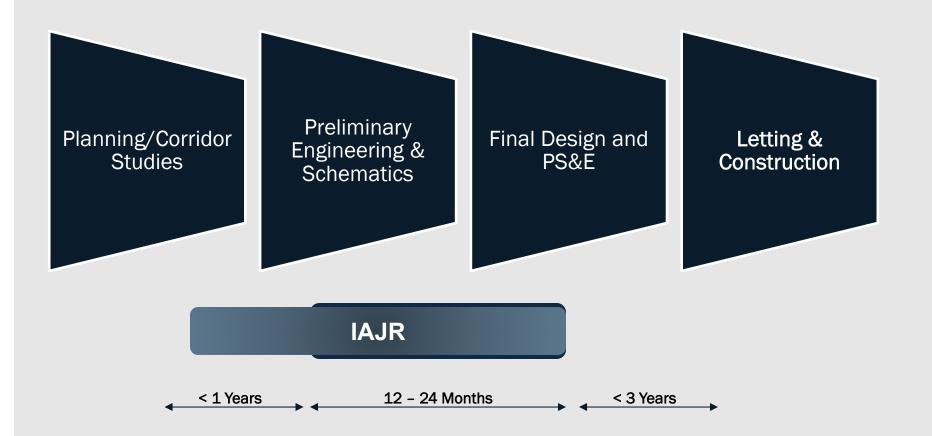
IAJR SOP Introduction

Purpose	 Provide TxDOT Guidance based on FHWA Access Guide Provide consistent point of reference for Districts, DES, and FHWA (Tx Div) 		
	Improve probability and ease of acceptance by FHWA		
	Clarify importance of early coordination with DES and FHWA		
Legal	> Title 23, United States Code, Highway Section 111		
Background	State will not add any point of access w/o approval of Secretary USDOT		
	Title 49, Code of Federal Regulation (CFR), Section 1.48		
	 Title 49, Code of Federal Regulation (CFR), Section 1.48 Secretary delegated the authority to FHWA 		
Policy			
Policy Evolution	Secretary delegated the authority to FHWA		
	 Secretary delegated the authority to FHWA FHWA Policy 		
	 Secretary delegated the authority to FHWA FHWA Policy October 22, 1990 		
	 Secretary delegated the authority to FHWA FHWA Policy October 22, 1990 February 1998 		
	 Secretary delegated the authority to FHWA FHWA Policy October 22, 1990 February 1998 August 2009 		
	 Secretary delegated the authority to FHWA FHWA Policy October 22, 1990 February 1998 August 2009 May 2017 		

TxDOT's Policy for IAJRs

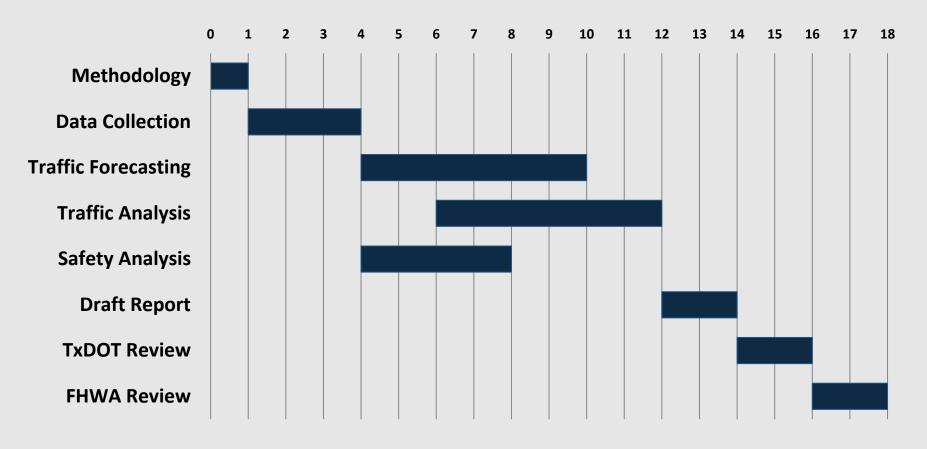

TxDOT's Policy for IAJRs

- Incorporates the two <u>updated</u> points in the FHWA May 2017 Policy
 - > Effects of revised access on Safety and Operations
 - >Access, Connection and Design



- > Retains the six points in the FHWA August 2009 Policy
 - ≻Need
 - > Alternatives
 - Consistency w/Local and Regional Plans
 - Potential future multiple Interchange additions
 - Coordination w/ Local Development/Transportation
 - Environmental Review Status

IAJR Process


Project Development & IAJR Timeline

Traffic Simulation & Safety Analysis Section (TSSAS)

IAJR Schedule

Typical Average Schedule

Months to Complete

TxDOT IAJR Process

TxDOT IAJR Coordination Process Phases: Early Coordination Draft Submittel to DE 8 Submittal to FHWA District conduct Analysis and prepare Schematics Address review comments Re-submit Schematic and IAIR ۲ Develop and Finalize M&A memo Instruct identities a need for IAJR and schedules an internal TxDOT kick-off meeting District submits draft IAJR and Schematic District Provide support for Schematic development Attends M&A coordination meeting to discuss Attends kick-off meeting 7b PDSS receives/coordinate IAJR review with TSSA and TRF DE 8-PD 8 8 EProvide support M&A memo Provide support on Engineering, Operation and Safety Analysis Verityinevia comments were addressed Provide suppor DE8-T88A Crash Data requested TRF Project Rosecnable End 0 120 FHWA Attends N&A coordination meeting to discuss Traffic Data Requested TPP Bd Consultant Contract Support PEP 8 For additional darification, see attached instructions

Traffic Simulation & Safety Analysis Section (TSSAS)

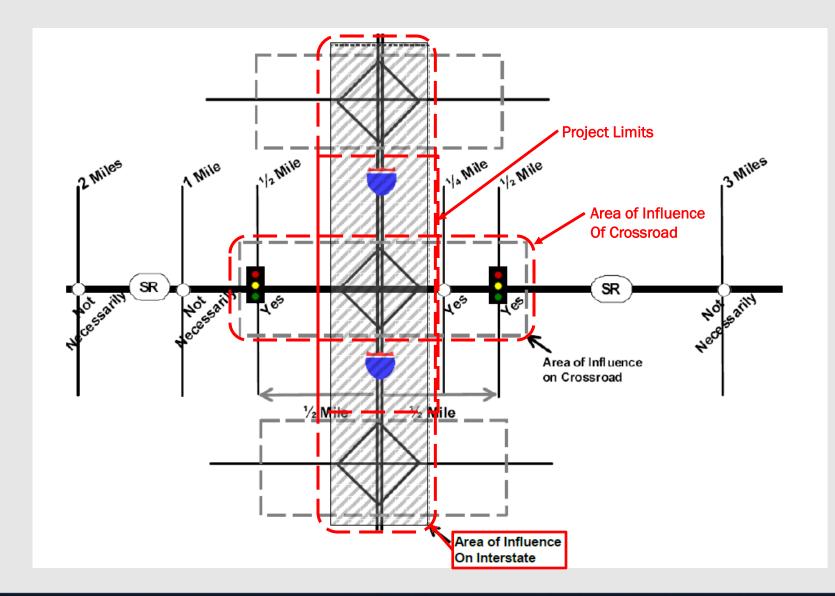
IAJR SOP Methodology – Early Coordination Meeting

- > For the purpose of developing a technical approach for IAJR development
- > Required for all projects with potential for IAJR
- > District, DES, and FHWA should attend
- Initial determination of project reasonableness
- > Attachment D provides a typical meeting agenda
- Meeting notes should be documented and included in the IAJR
- > Additional meetings may be required for major/complex projects

IAJR Methodology – Early Coordination Meeting

Common Issues in IAJR

- Poor Need
- Not considering other Alternatives
- Insufficient Area of Influence
- Ignoring crossroads
- > Unreasonable design volume
- Inappropriate traffic analysis tools selection
- > Weak safety analysis
- Phased project implementation but no interim year analysis
- > Documentation missing or provided too much
- > Skimming in re-evaluation


IAJR Methodology

- ≻ Need
- > Alternatives
- > Area of Influence
- > Analysis Years
- > Analysis Periods
- > Data Collection
- > Traffic Forecasting
- > Traffic Operational Analysis
- Safety Analysis

Area of Influence

- > Area of Influence is the area impacted by the proposed change
- Factors to be considered
 - > Area type
 - Interchange spacing
 - > Extent of congestion
 - > Anticipated traffic impacts
- > Along Mainlane
 - > In urban area, at least one adjacent interchange in either direction
 - > In rural area, depends upon the interchange spacing
- > Along Crossroad
 - $> \frac{1}{2}$ mile in either direction of proposed change
 - > Crossroad of adjacent interchange usually not included
- > A figure showing Area of Influence will be included in the report

Area of Influence (FHWA Guide)

IAJR - Analysis Years

- > Existing, Opening and Design Years required for each project.
 - > Existing year analysis will only include existing conditions.
 - > Opening and Design years will include both no-build and build conditions.
- Existing Year
 - > Should be start of IAJR Analysis or
 - > Preferably within 1 to 3 years from IAJR approval
- Design Year
 - > Minimum 20 years after approval of final plans
 - > Preferably, Opening + 20 years
- > Opening Year
 - > First year at which project is opened to traffic
 - > For Phase construction, opening year of first phase
- Interim Year
 - > Opening year of different phases
 - > when design year shows failure

IAJR - Analysis Periods

- > 30th highest hourly volume (design hour volume) minimum
- > AM and PM peak hour may be required
- Existing 24-hr volumes should be evaluated to verify
 - > Peak periods versus peak hours
 - Design Hour or K-factor
 - Peak hour selection
- For oversaturated conditions
 - > Multi-hour peak period may be needed
 - > 24-hr volume profile shall be evaluated

IAJR - Data Collection

- > Data Collection
 - > Roadway Geometry, Traffic Control
 - > Traffic Count, Travel Time, etc
 - ≻Crash Data
 - Summary of data collection
- > Traffic Count
 - > Weekday min. 48-hr
 - Classification count
 - Weekend (if required)
 - > Where Microsimulation is used, one week or more for calibration
 - Actual traffic counts within 1 to 3 yrs of IAJR approval

Traffic Forecasting

- > Traffic forecasting is complex and requires understanding of
 - Land use
 - Demographics
 - Project location

- TxDOT Transportation Planning & Programming Division (TP&P) provides guidance and approval requirements
- > TP&P-Traffic Analysis Section (TPP-T) SOP
- > Three approaches to develop traffic forecasts
 - > Pivot/Trend Line/Growth Method
 - > Based on historic growth
 - > Travel Demand Model (TDM)
 - > Utilizing MPO TDM
 - > Comparing TDM output with traffic counts, land use
 - Hybrid Approach
 - Combination of TDM and Growth Factor
 - Start with TDM and adjust with growth factor

Traffic Forecasting Approval

TP&P provides three options for approval

- > Option A: TPP-T Development
 - > TPP-T develops and signs & seals
- > Option B: District and TPP-T Joint Development
 - > District/Consultant develop
 - > TPP reviews and signs & seals
- > Option C: District Development
 - > District/Consultants develop
 - District reviews and signs & seals
- A traffic projections/forecast memo is required

Design Consideration

Proposed Design should:

- Meet or exceed current design standards
- > Not include partial interchange
- > Only include access to public road

Design Exception (if required)

- Should be noted in the IAJR
- > Request should be submitted separately

IAJR will include

- > Design schematics i/c signing layout
- >DSR showing design criteria

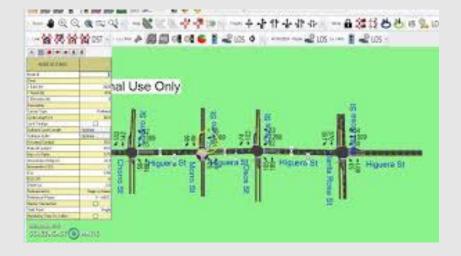
IAJR QC Checklist

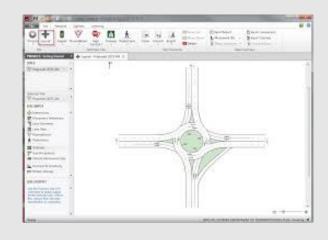
Interstate Access Justification Report Engineering Operations and Safety Analysis TxDOT Standard Operating Procedures (SOP) DRAFT

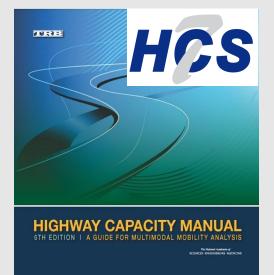
<u>Attachment F</u> Interstate Access Justification Report (IAJR)

Quality Control Checklist

		Revi	ew
No	ПЕМ	Checked By	D
	Methodology Coordination		
1	Methodology Coordination Meeting (MCM) conducted and meeting minutes documented		
2	Report includes a project description along with a project location map		
3	Need and Purpose supported by data and justifies the project		
4	Area of influence includes adjacent interchanges & intersections as per MCM		
5	Analysis years per MCM		
6	If the project is to be implemented in phases		
	Traffic Volume		
7	Existing traffic count data collected		
8	Traffic forecasts are developed per TPP guidelines and approved by TxDOT		
9	Traffic forecast methodology and assumptions memo is included		
10	If Travel demand model (TDM) used for traffic forecasting , TDM is latest/approved model		
11	Traffic forecasts are checked for reasonableness		
	Traffic Analysis		
12	Traffic analysis tools selected per MCM		
13	Latest guidelines/standards have been used		0
14	Study area type is Central Business District		
15	Existing and/or expected future traffic conditions is saturated		-
16	If microsimulation tool was used, the report includes the calibration memo		
17	Measure of Effectiveness (MOEs) are consistent with analysis tools and project settings		
18	The results of traffic analysis been reviewed for reasonableness		
19	The results of build year analysis show better or equal operational conditions		
20	The traffic analysis software files checked to verify input, and parameters		
	Safety Analysis		
21	The safety analysis study area selected per MCM		
22	The historical crash data and analysis conducted for latest 4 years		
23	The safety analysis includes predicted crash frequency or evaluation of CMF		
	Report		
24	Design schematic is included		
25	Signing plan is included		
26	The proposed project is consistent with State/MPO/local plan and documentation included		


Traffic Simulation/ Analysis

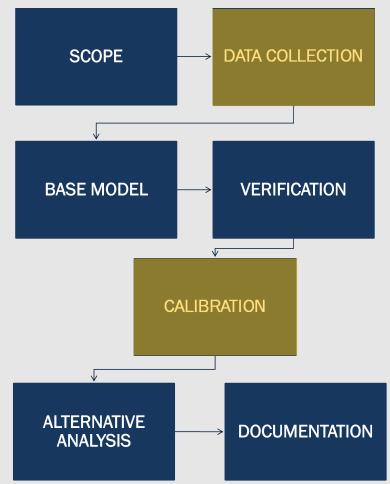

Scope and Approach depend on


- > Area Type
 - > Urban/Suburban/Rural
- > Traffic conditions
 - Congested/un-congested
- Complexity of Project/Analysis Tools
 - Isolated /System interchange
- Selection of Analysis Tools
 - Measures of Effectiveness (MOEs)
 - Cost Effectiveness
 - FHWA Traffic Analysis Toolbox

Traffic Simulation/Analysis

- HCM-based Analysis Tools
- Macroscopic & deterministic
- ➢Good for under-saturated flow
- Highway Capacity Software
 - ➢Quick & reliable
 - Good for traditional analysis
 - ➢ Freeway facilities
- ≻Synchro
 - Good for arterials
 - ➢Signal optimization
- ➢Sidra
 - Commonly used for roundabouts

Traffic Simulation/Analysis


- Microsimulation Analysis Tools
- ➤Warranted for complex scenarios
 - ➢ Pros
 - ➢Good for longer congestion
 - ➢Good for system effect
 - ➤Good for presentation
 - ≻ Cons
 - ≻Data requirement
 - ≻Time consuming
- Common microsimulation tools
 - ➤ CORSIM
 - > VISSIM

Traffic Simulation/Analysis

Traffic Modeling Process

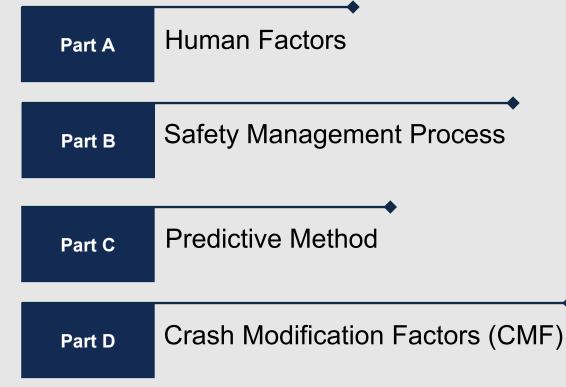
Traffic Simulation/ Analysis

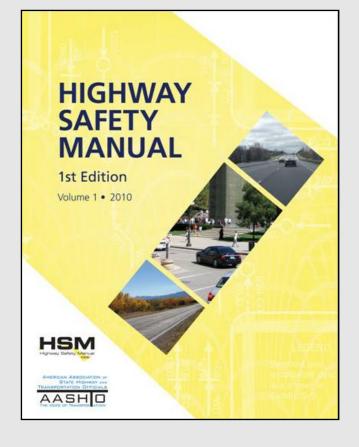
- > Analysis must be done for
 - Each scenario
 - > All analysis periods
 - > Each study area segment
- > Analysis should Identify
 - > Segments / intersections with unacceptable MOEs
 - Reasons for failing
 - Potential mitigating measures
 - Needed improvements within the study area
 - > The effect of failure on Interstate Operation

Safety Analysis

Scope and Methodology

- Project type and Location
- Complexity
- Crash History
- Need and Purpose
- Safety Analysis Study Area
- > Option A (Preferred)
 - > Historical Crash Analysis and HSM Predictive Method
- > Option B
 - > Historical Crash Analysis and CMF Evaluation

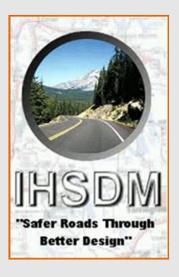

Historical Crash Analysis


- > Latest 3 to 5 years (Determined during Coordination Meeting)
- > To identify or confirm safety problems
- > Analysis should include
 - > Crash Frequency by facility type for each year
 - > Crash Severity by facility type for each year
 - > Crash rates (to be compared with Statewide Average)
 - > Primary contributing factors
 - > Manner of collision for each year by time of day
 - >Crash Diagram/High Accident Location
 - > Heat maps/Bar Charts/GIS

Safety Analysis

Highway Safety Manual

- Quantitative Safety Analysis
- Predict crash frequency
- Similar to HCM



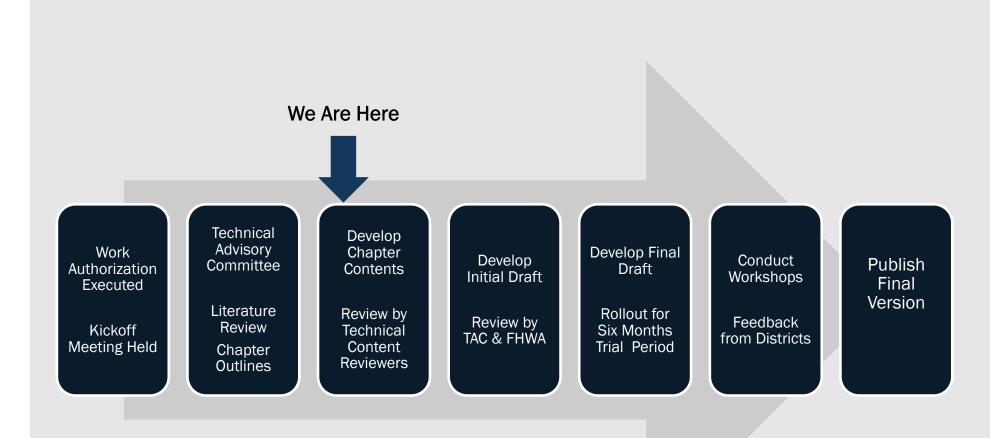
Safety Analysis

Part C Predictive Method

- >Anticipated change in crash frequency
 - Function of traffic volume
 - Roadway characteristics
 - Crash Modification Factor (CMF)
- Safety Performance Functions (SPF)
- Common safety tools
 - Interactive Highway Safety Design Model (IHSDM)
 - Highway Safety Software (HSS)
 - Spreadsheet based tools

Safety Analysis Study Area

- > Area impacted by the proposed project
- > Traffic analysis study area is a good starting point
- > Depends upon the safety impacts of the proposed project


> Along Mainlane

- Minimum One adjacent interchange on either side of proposed change
- > Along Crossroad
 - >One-half mile from the ramp terminal
- Sample Area of Influence

Current Initiatives

- Traffic and Safety Analysis Manual (TSAP)
- Safety Scoring Tool
- Design Exception SOP
- Intersection Framework
- Highway safety manual implementation
 - Texas specific SPFs and calibration factors
 - ➢ Participation in FHWA DDSA EDC5
 - >NCHRP panel
- ➤Training
- Roadway Safety Assessment (RSA)
- Microsimulation toolbox (Future)

TSAP Manual Development Process

Safety Scoring Tool

- Purpose is to assist designers in making safety-driven decisions during the project development and design process
- Rural 2-lane & Rural multi-lane tools available
- Intersection tool under development
- > The Rural scoring tools should be used on applicable projects
- Districts are expected to submit the initial and final safety score on applicable projects - effective as of the April 2020 letting.
- Scores are reported through Administration to Commission for each letting month
- Tools, instructions, FAQ's and videos are all posted on the DES Webpage

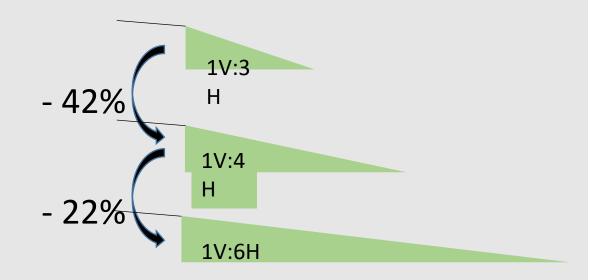
Rural Scoring Tools - Eligibility Matrix as of May 2020

Scope of Work	Scoring Tool Applies	Scoring Tool Currently Exempt	SII Applies
Added Capacity/Mobility			
Major Rehab/widening			
Super 2			
Bridge Replacements (On System)			
Bridge widening/major rehab			
Seal Coats/Overlays			
Full Depth Repair (Spot locations only)			
Intersections/Intersection work			
Traffic Signals			
Replacing existing signs/striping			
Any Urban facility			
Rural Interstate, Freeway or Frontage Roads			
Bridge Maintenance/Repair			
Shared Use/Bike Path			
Bridge Replacements (Off System)			
Category 8 Widening projects (all)			
Category 8 HSIP (non-widening)			

*RTZ projects are reported separately

Safety Analysis and Design

- Traditional or Nominal Safety
- DDSA or Substantive Safety
- >Anticipated change in crash frequency
 - Function of traffic volume
 - Roadway characteristics
 - Crash Modification Factor (CMF)



Purpose of Safety Scoring Tool

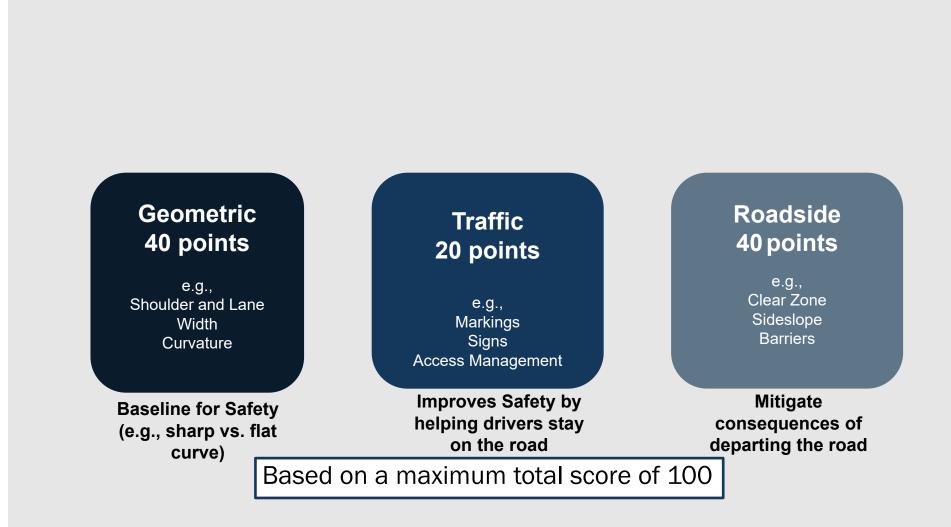
Incorporate Safety in the project design process

- Understand the Safety effect
- Simple and Straightforward

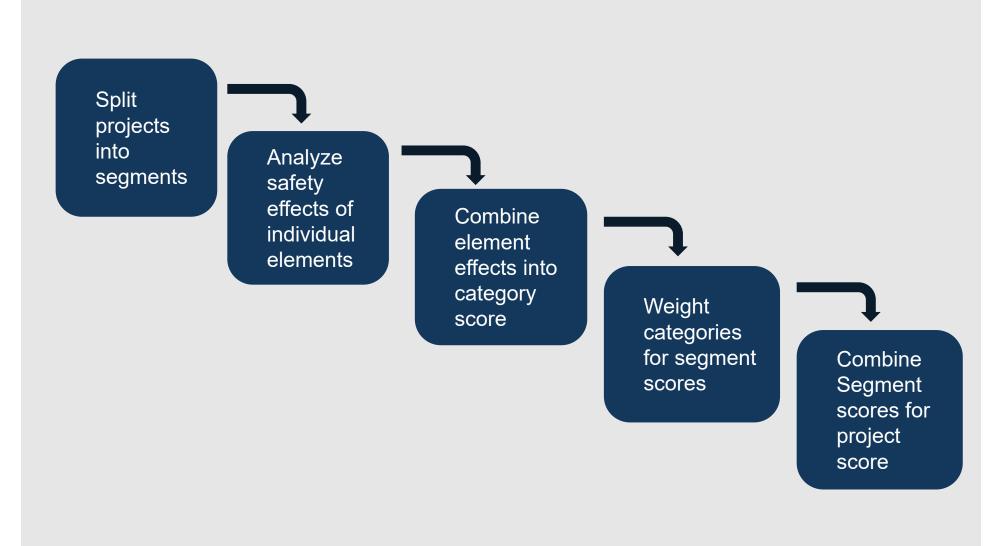
Basic Approach


Comparing Alternates

Roadway Element Categories


Summary of Scoring Procedures

Safety Scoring Tool Approach


- Basic Approach
- Comparing Alternatives

Roadway Element Categories

Summary of Scoring Procedure

Questions? Feedback

Contact

Khalid Jamil, P.E.

(512) 486-5171

Khalid.jamil@txdot.gov