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INTRODUCTION

Google’s Waymo Autonomous Car

What is an Autonomous Vehicle (AV) ?

» Also called self-driving or driverless cars
» Cars that can move and guide itself without human input
» Example: Google’s Waymo, which is a fully autonomous

hybrid-minivan

Potential Benefits of AVs
» Increased safety — Approximately 1.2 million people die in traffic accidents every year as 90% of serious

crashes occur due to human error.

» Better mobility and less traffic — Autonomous cars can communicate with one and another and identify the most optimal route
which could reduce congestion.

» Reduced costs — A NHTSA study showed motor vehicle crashes in 2010 cost $242 billion. Eliminating the vast majority of motor

Source: https://med.1n, " vy, mo-sert div 1-20ad: <4, Fagnant and Kockelman (2013); https://marketbusinessnews.com/financial-glossary/autonomous-vehicle/; https://www.nhtsa.qov/technology-innovation/automated-vehicles-safety


https://medium.com/waymo/safety-at-waymo-self-driving-cars-other-road-users-d3b33e57e994
https://marketbusinessnews.com/financial-glossary/autonomous-vehicle/
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
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How will safety be affected before we get to fully automated vehicles?

https://innovationatwork.ieee.org/autonomous-vehicles-for-today-and-for-the-future/




Automated Vehicles Safety

Why People Keep Rear-Ending Self-Driving Cars

Human drivers (and one cyclist) have rear-ended self-driving cars 28 times this year in California—accounting for nearly two-thirds of robocar crashes.

In California alone, seff-driving cars have been imvolved in nearly 50 crashes sc far in 2018, Why are so many of them rear-ended? ANDREI STANESCU/ALAMY

https://www.wired.com/story/self-driving-car-crashes-rear-endings-why-charts-statistics/




Automated Vehicles Safety
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Volume 45, 2020, Pages 161-168 =

Traffic Accidents with Autonomous Vehicles: Type
of Collisions, Manoeuvres and Errors of
Conventional Vehicles’ Drivers

. etrovié * B mir Mijailovié 3, Dalibar PeZié 2 . - . . .
Borde Petrovic &, Radomir Mijailovic®, Dalibor Pesic Applying statistical analysis, we were found that the type of collision
“rear-end” more often in traffic accidents with autonomous
. [ o" H ” o H ”
+ Addto Mendeley o2 Share 98 Cite vehicles. Types of collisions “pedestrian” and “broadside” were less
in traffic accidents with autonomous vehicles.

Show more s~

https://www.sciencedirect.com/science/article/pii/S2352146520301654
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Automated Vehicles Safety

Waymo’s driverless cars were involved in 18
accidents over 20 months

Kyle Wiggers @Kyle_L_Wiggers October 30, 2020 7:00 AM

*Waymo reported 11 actual rear-end collisions involving its cars and one simulated
collision. In eight of the actual collisions, another car struck a Waymo car while it was
stopped; in two of the actual collisions, another car struck a Waymo car moving at slow
speeds; and in one of the actual collisions, another car struck a Waymo car while it was

decelerating. The simulated collision modeled a Waymo car striking a decelerating car. I




Level of Automation

The Five Levels of Autonomous Driving

FULLY AUTONOMOUS - Vehicle is completely driverless

No level 5 per NHTSA. Per SAE, full-time automated driving in all conditions without a human driver.
These vehicles will not feature driving equipment and will no longer look like the vehicles of the past.

Tur 1 env ronments/conaltions In derineqg use cc 3
Pe ation. Per SAE, Self-driving is fully possible in most road conditions
and environments without need of human intervention. A functional driver cockpit is still in place (steering
wheel, brake/acceleration pedal, etc.)

CONDITIONAL AUTOMATION/LIMITED SELF-DRIVING -
The car becomes a co-pilot

The vehicle manages most safety-critical driving functions in known (mapped) environmental
conditions. A human driver is still present and expected to manage vehicle operation.

PARTIAL AUTOMATION/COMBINED AUTONOMOUS
FUNCTIONS - Key automated capabilities become standard but
driver still in control

At least two simultaneous autonomous tasks become are managed by the vehicle in specific scenarios.
DRIVER ASSISTED/FUNCTION-SPECIFIC -

Intelligent features add layer of safety and comfort

A human driver is required for all critical functions. The car can alert the driver to
conditions, environment and obstructions. It can also offer assisted/smart performance
and driving capabilities.

N ma e N

s le e e e e e ZERO AUTOMATION - Driving as Usual
A human driver is required to operate the vehicle safely at all times.
ALTIMETER

..................................................................




PROBLEM STATEMENT

To investigate if there is any mismatch between human drivers’ expectations and AVs

decisions in a car-following scenario at stop-controlled intersections

Project Objectives:

(4

L)

L)

* Examine the braking behavior of participants in the following vehicle behind two different types of

lead vehicles (designated AV and Human-like) while stopping at a stop-controlled intersection.

** Analyze the acceleration behavior of test participants and the two kinds of leading vehicles after stopping at the

stop-controlled intersection.

**  Evaluate the performance of popular Surrogate Safety Measures (SSMs) in detecting potential near-crash

events (low and high risk).

s Classify the potential near-crash events from the safe events using a random forest classifier for two different data

sampling techniques and examine significant factors influencing near-crashes.
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METHODOLOGY

Experiment Design

Driving Simulator Simulation Environment
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METHODOLOGY

Test Car-Following Scenarios

Leading vehicle designated as an AV

' ici : 12 males and 12 females . Mean Age = 24.8 yrs |
Scenario 1 AV-Human 24 participants follow this leader }—{ recruited | Std.Dev.=2.43yrs |

4 designed test speed profiles

35 DeSIgnated AV Test Profiles Max. Speed Avg. Acceleration Rate 8 Max. Deceleration Rate
—C-1 Profile (mph) (m/s?) (m/s?)
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METHODOLOGY

Test Car-Following Scenarios

Leading vehicle is HUMAN-like

Mean Age = 25.3 yrs

Std. Dev. =2.12 yrs

. . . . 12 males and 12 females
Scenario 2 HUMAN-Human 24 participants follow this leader recruited

4 speed profiles recorded from 4 human drivers

Human-Like Test Profiles
35 —FF-1 Extracted Max. Speed Avg. Acceleration Max. Deceleration
FF-2 Profile from (mph) Rate (m/s?) Rate (m/s?)

30 )
_ 5 T —EM-1
=) EF-1  Female
E 20 —EM-2
-
E 15 EF-2 Female
<10

5 EM-1 Male

0

EM-2 Male .
0 5 10 15 20 25 v
TIME (sec) I




Designated AV Leader Speed Profile
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METHODOLOGY

HUMAN-like Leader Speed Profile

v
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X8 In both car-following scenarios, one test speed profile is assigned to the o1 Cas cans 1 cans cans cans cans
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METHODOLOGY

Experiment Procedure

Partici . doml ined £th Participant follows the leading
Participant walks in "Bl A 5-min trial run ) IAEITRETRS 3 (elale Il E Rl o) (IS @ Rl vehicle
— — two car-following scenarios .
(AV or HUMAN-like)

Leading Vehicle in the car-following scenario

Images from the experiment
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RESULTS: Descriptive Statistics

AV-Human (Scenario 1)

Descriptive Statistics Correlation Matrix

Ego
Variables Variables Speed

Ego Speed
Ego Speed mph  18.48 11.21 0 47.65
e ——
Leader Speed mph 19.20 10.88 0 30.00 Ego Acc./Dec. 0.18 0.28

2 = -
Ego Acc./Dec. m/s 0.17 1.04 8.00 3.00 eaderacc/pec. IR 025
Leader Acc./Dec. m/s? 0.02 0.79 -3.25 1.00
Clearance 0.32 0.33 0.15

m 2064 2336 677 13553

Leader Ego
Speed Acc./Dec.

» Aserious (uphill) positive correlation between the participants’ and the AV leader’s average speed

> Potential reason: Participants closely following the designated AV

Data in each scenario is coming from 24 participants

Leader
Acc./Dec.

-0.17




Descriptive Statistics

HUMAN-Human

Descriptive Statistics

H

(Scenario 2)

Ego Speed mph 21.36 13.23 0.00 63.45
Leader Speed mph 22.11 11.31 0.00 34.58
Ego Acc./Dec. m/s? -0.31 1.49 -8.00 3.00
Leader Acc./Dec. m/s?2 0.00 1.23 -8.00 3.00
m 46.06 37.35 -1.70 139.94

» No serious correlation between the participants’ and the HUMAN-like
leader’s average speed

» Participants closely followed the designated AV leader (approx. half
the average clearance in the other scenario)

» Faster ego speeds while following the human-like leader

Correlation Matrix

Leader
Acc./Dec.

Ego Ego

ELELIES Speed Clearance

Acc./Dec.

Ego Speed
Leader Speed 0.50
Ego Acc./Dec. 0.37 0.42

Leader Acc./Dec. [N 0.24 0.27

Clearance -0.31 -0.13 -0.23 0.09

Two sample T-tests

Participants Different (p <

Driving in 0.05)
Avg. Clearance Scenario 1 23.36
(m) 48.50 <0.0001 Yes
Scenario 2 37.35
Avg. Ego Speed Scenario 1 11.21
(mph) 16.22 < 0.0001 Yes
Scenario 2 13.23

Data in each scenario is coming from 24 participants

* Two-sample t-tests were performed with significance level set to 5%



Braking Comparison (scenario 1)

Braking Comparison: Participants vs AV

Driver | When AV Leader
10 Designated AV Riees Participants Braking Speed Profile:
Leader S
35 Daver &
Daver T
3I:] Daver & 40 C-l
Daver 9 35
e Daver 10 — L LD
.E-. 25 Daver 11 30
€ 2 rrns » C-2.75
E Daver 14 -E'l 25
m Dever 15 £ —C-3.25
15 20
E Daver 16 %
“ 10 e i E 15 == oAverage AV
Daver 19
10
5 e i ver 20
Daver 21
D Daver 12 5 @
—— D ver 73 D
T‘IME (sec) - am AV Broking TIME (SBC)
» There is a difference in the average braking speeds of the participants and » Significant difference in the braking speeds of the participants
the designated AV following the AV leader braking with C-1 profile, and the average
Av.
Two-tailed p-value = 0.0396* < 0.05 (t=2.10; std. error = 0.28) Two-tailed p-value = 0.0007* < 0.05 (t=3.63; std. error = 2.98)

Scenario 1: AV leader and Scenario 2: Human-like Leader; * Two-sample t-tests were performed with significance level set to 5% Data in each scenario is coming from 24 participants



Braking Comparison (scenario 2)

Braking Comparison: Participants vs Human-Like Leader
When HUMAN-Like

_ Participants Braking
HUMAN-Like Leader Speed Profile:
35 Leader EF-1
— ——FF-2 EF-1
30 : 35
—EM-1 S em—FF-2
25 30
= —EM-2 e EM -1
g 20 = 25
E Average HUMAN % 20 e FM-2
=15 . =
E e Parti cipants ﬁ 15 HUMAN-like
“ 0 A Leader
Participants 7 10
5 S0P 5 \ D
0 0 1
0 5 10 15 20 2 0 5 10 15 20 2,
TIME (sec) TIME (sec)
> Thereis no difference in the average braking speeds of the participants » No difference in the braking speeds of the participants, and the
and the HUMAN-like leader Two-tailed p-value = 0.85 > 0.05 HUMAN:-like leader. Two-tailed p-value = 0.0007* < 0.05
p Participants Driving - I Different
arameters T ean t-value (p < 0.05) > Participants in the following vehicle performed braking
: maneuvers behind the designated AV at relatively short
Avg. Clearance Scenario 1 19.56 10.10
\ ! 2.73 0.008 Yes |
During Braking (m) Scenario 2 30.81 17.44 clearances

* Two-sample t-tests were performed with significance level set to 5% Data in each scenario is coming from 24 participants

Scenario 1: AV leader and Scenario 2: Human-like Leader;



I Risk Analysis

Identify Potential Conflict Potential Conflict Events
Events using Six SSMs

Detect Potential Near-Crash Events

SSMs Performance

When the assigned threshold of any one or more surrogate measures gets violated at any time instant of

car-following by the following vehicle, the instant is characterized as a ‘Potential Conflict Event’

Parameters

Classify Safe and Potential
Near-Crash Events

Quantify Significant Factors

No. of Potential Conflict Events

Avg. Ego Speed (mph) 18.41 23.26

Avg. Leader Speed (mph) 12.51 14.69

Avg. Ego Acceleration/Deceleration (m/s?) -0.65 -0.70

Avg. Leader Acceleration/Deceleration (m/s?) -1.23 -0.82

Avg. Clearance (m) 12.19 15.44

—




RESULTS - Risk Analysis

Potential Near-Crash Events

Identify Potential

Conflict Events using Six
SSMs

Detect Potential Low Risk
Near- Crash Events

High Risk

Clearance <4 m

Clearance<2 m

| Near-Crash (High Risk) e Participant
35 Event 30
Classify Safe and = e« AV Leader
Potential Near-Crash 30 25
Events
— 25 Clearance between
i 20 vehicles
g 20
P = 15
Quantify Significant =) 15 Clearance,
Factors 5 \ 1.38 m -
& 10 \ ) oo 10
N &
\ -
\ 5
5 \ P’ 7&
\ \_—/
0 0
94 99 104 109 114 119 124

TIME (sec) I




RESULTS - Risk Analysis

140 m All Near-Crashes
m MNear-Crashes

113 114 113
99 100 o4 {(High Risk)
83
50
4]
C-1 C

-2.25 C-2.75 C-3.25 EF-1 EF-2 EM-1 EM-2
AV LEADER SPEED PROFILE HUMAN-LIKELEADER SPEED PROFILE

v uman | s man rcntes | twses o
Near-Crashes

) ) 120
Identify Potential

100

Conflict Events using Six
SSMs

]

al

Detect Potential
Near- Crash Events

m SSMs Performance

Classify Safe and
Potential Near-Crash
Events

Quantify Significant
Factors

COUNT OF NEAR CRASHES

» Allocating the AV leader with C-3.25 profile in scenario 1 led to the highest number of

near-crashes (high risk) events

> Asimilar count was seen when the HUMAN-like leader was driving with EF-2 profile ahead of the participants
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Identify Potential
Conflict Events using Six
SSMs

Detect Potential
Near- Crash Events

- SSMs Performance

Classify Safe and

Potential Near-Crash
Events

Quantify Significant
Factors

Near Crash Detection Range of SSMs

RESULTS - Risk Analysis

Detecting Near-Crash (High Risk)
m Detectimg Near-Crash (Low Risk)
Warning Index (WI) A .24 i Warning Index (WI)
Critical Jerk g Critical Jerk
0.8
DRAC — 0 DRAC
Mogineg (IE S —— 13.34 Bosiifind TT0C
C 4,61 Inverse TTC
oymrsaic T | !
— 3.78 TTC
LG 7}
=2 0 2 4 o R 10 12 14 16
Detection Range (m)

-0.04

Detected Near-Crash (High Risk)

B Detected Near-Crash (Low Risk)

9.62
126
1]
0
0

12.22
N 12 3

4.78
I .05

4.34
I .05

o 2 L ] -3 10 12 14 16

Detection Range (m)

» MTTC’s near-crash event detection range (%): ~ 13 m

» MTTC’s near crash (high risk) event detection range (%):

~11m

Hllustration:

Potential Near Crash
Detected by MTTC!

e
Ol

o

Ego/Following Vehicle
13 m

Leading Vehicle




Significant Factors Affecting Potential Near-Crash Classification

Identify Potential

Conflict Events using Six
SSMs

1 Detect Potential
Near- Crash Events

SSMs Performance

Logistic Regression Model:

Classify Safe and

Potential Near-Crash

Events

0.5313891

Intercept 0.568617
1 Quantify Significant Long. Position  0.00024389
Factors
Clearance -0.3908231

Relative Speed  1.43818486

Ego Acc. 0.90320181
Leader Acc. -2.4457863
Gender 0.95224009

0.86

0.00017
0.0478443
0.1853836
0.1866967
0.2842191

0.4071718

» Based on Mean Decrease Gini (RF algorithm)

2.06

66.73

60.18

23.40

74.05

5.47

» Logistic regression on the undersampled datasets validated these findings

“ Misclassification Rate

0.04

0.2846
0.1514
<.0001*
<.0001*
<.0001*
<.0001*

0.0194*

» For AV-Human scenario ===p Most significant: Leader Acceleration/Deceleration

» For HUMAN-Human scenario === Most significant: Clearance between vehicles

Leader Acc.
Relative Speed
Clearance
Ego Acc.
Long Position

Gender

RESULTS - Risk Analysis

Derived from Undersampled data

50.8467

35.1829 2
18.0660 3
12.5391 4
9.8693 5
2.5092 6



Identify Potential

Conflict Events using Six
SSMs

Detect Potential
Near- Crash Events

SSMs Performance

Classify Safe and

Potential Near-Crash
Events

Quantify Significant
Factors

Based on Mean Decrease Gini (RF algorithm)

Significant Factors Affecting Potential Near-Crash Classification

For AV-Human scenario === Most significant: Leader Acceleration/Deceleration

For HUMAN-Human scenario == Most significant: Clearance between vehicles

Logistic regression on the undersampled datasets validated these findings

Logistic Regression Model:

Intercept
Long Position
Clearance
Gender
Ego Speed

Leader Speed

Ego Acc./Dec.

1.174

0.000

-0.296

0.081

0.457

-0.431

0.554

0.446

0.000

0.033

0.335

0.054

0.052

0.097

6.919

0.913

79.949

0.059

70.287

70.116

32.378

“ Misclassification Rate

0.83

0.0085*
0.3394
<.0001*
0.8087
<.0001*
<.0001*

<.0001*

Clearance
Leader Acc.
Leader Speed
Ego Speed
Ego Acc.

Long. Position

RESULTS - Risk Analysis

Derived from Undersampled data

29.7922

23.8478 2
19.2116 3
14.3613 4
7.5258 5
3.4342 6
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CONCLUSIONS

Braking behavior analysis indicated a mismatch in the overall braking pattern of the participants
and the designated AV leader. However, no such mismatch between the participants and the
human-like leader.

Participants accelerated at much faster rates (1.25 m/s?) after stopping at the stop-controlled intersections than the designated AV (0.5
m/s?). These rates resembled the rates when the participants followed the human-like leader.

MTTC outperformed other five SSMs by anticipating the near-crashes 10 seconds before their occurrence at a range of ~13 min the two
car-following test scenarios.

Participants in Scenario 1 were more likely to be involved in near-crashes involving high risk
(145) with the designated AV leader than with the human-like leader in Scenario 2 (112).

The participants showed a higher tendency of near-crash involvement while following the AV
leader designated with C-3.25 profile and the human-like leader with EF-2 profile.

RF classifiers on the undersampled data achieved the highest accuracy rates in predicting and classifying the potential near-crash events.

AV leader’s acceleration/deceleration in Scenario 1, and clearance between vehicles in Scenario

2 emerged as the most significant in potential near crash events classification I




Thank you!

Questions?
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