Examining the safety effects of mixed-traffic with automated and human-driven vehicles

TexITE Houston Chapter

INTRODUCTION

What is an Autonomous Vehicle (AV) ?

- Also called self-driving or driverless cars
- Cars that can move and guide itself without human input
- Example: Google's Waymo, which is a fully autonomous

hybrid-minivan

Google's Waymo Autonomous Car

Potential Benefits of AVs

- Increased safety Approximately 1.2 million people die in traffic accidents every year as 90% of serious crashes occur due to human error.
- Better mobility and less traffic Autonomous cars can communicate with one and another and identify the most optimal route which could reduce congestion.
- > Reduced costs A NHTSA study showed motor vehicle crashes in 2010 cost \$242 billion. Eliminating the vast majority of motor

INTRODUCTION



How will safety be affected before we get to fully automated vehicles? https://innovationatwork.ieee.org/autonomous-vehicles-for-today-and-for-the-future/

Automated Vehicles Safety

Why People Keep Rear-Ending Self-Driving Cars

Human drivers (and one cyclist) have rear-ended self-driving cars 28 times this year in California—accounting for nearly two-thirds of robocar crashes.

In California alone, self-driving cars have been involved in nearly 50 crashes so far in 2018. Why are so many of them rear-ended? ANDREI STANESCU/ALAHY

https://www.wired.com/story/self-driving-car-crashes-rear-endings-why-charts-statistics/

Automated Vehicles Safety

Transportation Research Procedia Volume 45, 2020, Pages 161-168

Traffic Accidents with Autonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles' Drivers

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

Applying statistical analysis, we were found that the type of collision "rear-end" more often in traffic accidents with autonomous vehicles. Types of collisions "pedestrian" and "broadside" were less in traffic accidents with autonomous vehicles.

https://www.sciencedirect.com/science/article/pii/S2352146520301654

Automated Vehicles Safety

Waymo's driverless cars were involved in 18 accidents over 20 months

•Waymo reported 11 actual rear-end collisions involving its cars and one simulated collision. In eight of the actual collisions, another car struck a Waymo car while it was stopped; in two of the actual collisions, another car struck a Waymo car moving at slow speeds; and in one of the actual collisions, another car struck a Waymo car while it was decelerating. The simulated collision modeled a Waymo car striking a decelerating car.

https://venturebeat.com/2020/10/30/waymos-driverless-cars-were-involved-in-18-accidents-over-20-month

Level of Automation

The Five Levels of Autonomous Driving

Level 5

Level 4

and a second the second the second second second

and a state of the second state of the

Level 3

Level 2

Level 1

Level 0

FULLY AUTONOMOUS - Vehicle is completely driverless

No level 5 per NHTSA. Per SAE, full-time automated driving in all conditions without a human driver. These vehicles will not feature driving equipment and will no longer look like the vehicles of the past.

HIGH AUTOMATION - Capable of performing all safety-critical driving functions while monitoring environments/conditions in defined use cases Per NHTSA, this is full self-driving automation. Per SAE, Self-driving is fully possible in most road conditions and environments without need of human intervention. A functional driver cockpit is still in place (steering wheel, brake/acceleration pedal, etc.)

CONDITIONAL AUTOMATION/LIMITED SELF-DRIVING -

The car becomes a co-pilot

The vehicle manages most safety-critical driving functions in known (mapped) environmental conditions. A human driver is still present and expected to manage vehicle operation.

PARTIAL AUTOMATION/COMBINED AUTONOMOUS

FUNCTIONS - Key automated capabilities become standard but driver still in control

At least two simultaneous autonomous tasks become are managed by the vehicle in specific scenarios.

DRIVER ASSISTED/FUNCTION-SPECIFIC -

Intelligent features add layer of safety and comfort

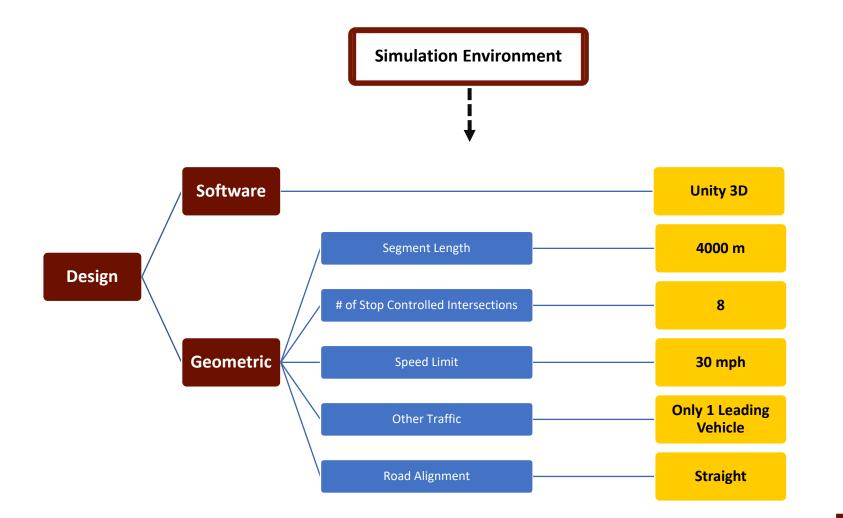
A human driver is required for all critical functions. The car can alert the driver to conditions, environment and obstructions. It can also offer assisted/smart performance and driving capabilities.

ZERO AUTOMATION - Driving as Usual A human driver is required to operate the vehicle safely at all times.

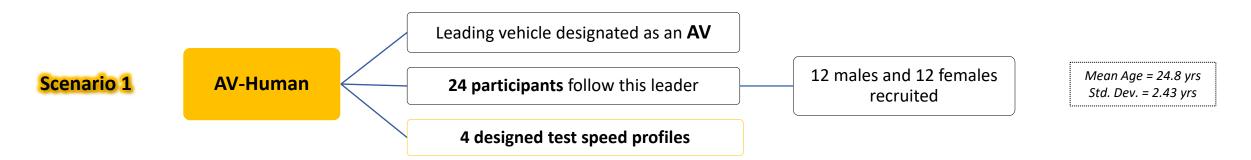
PROBLEM STATEMENT

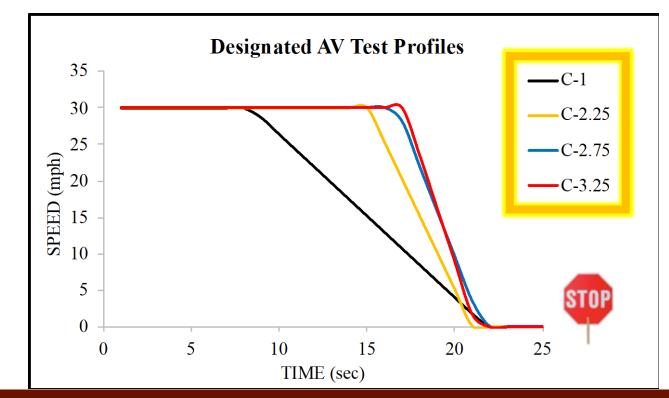
To investigate if there is any mismatch between human drivers' expectations and AVs

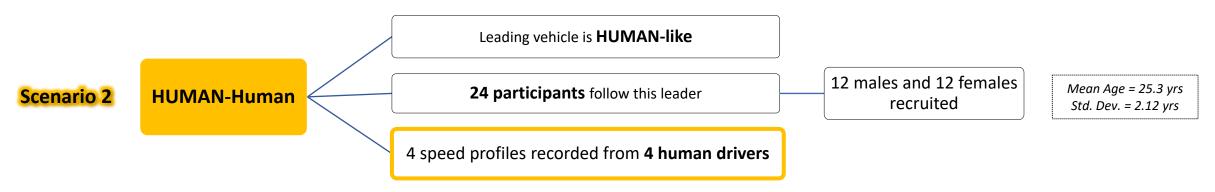
decisions in a car-following scenario at stop-controlled intersections

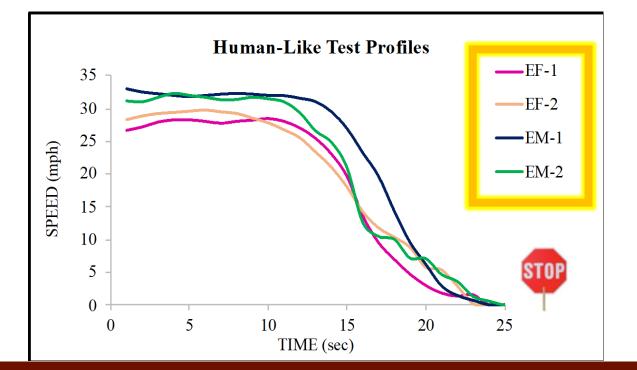

Project Objectives:

- Examine the braking behavior of participants in the following vehicle behind two different types of lead vehicles (designated AV and Human-like) while stopping at a stop-controlled intersection.
- Analyze the acceleration behavior of test participants and the two kinds of leading vehicles after stopping at the stop-controlled intersection.
- Evaluate the performance of popular Surrogate Safety Measures (SSMs) in detecting potential near-crash events (low and high risk).
- Classify the potential near-crash events from the safe events using a random forest classifier for two different data sampling techniques and examine significant factors influencing near-crashes.

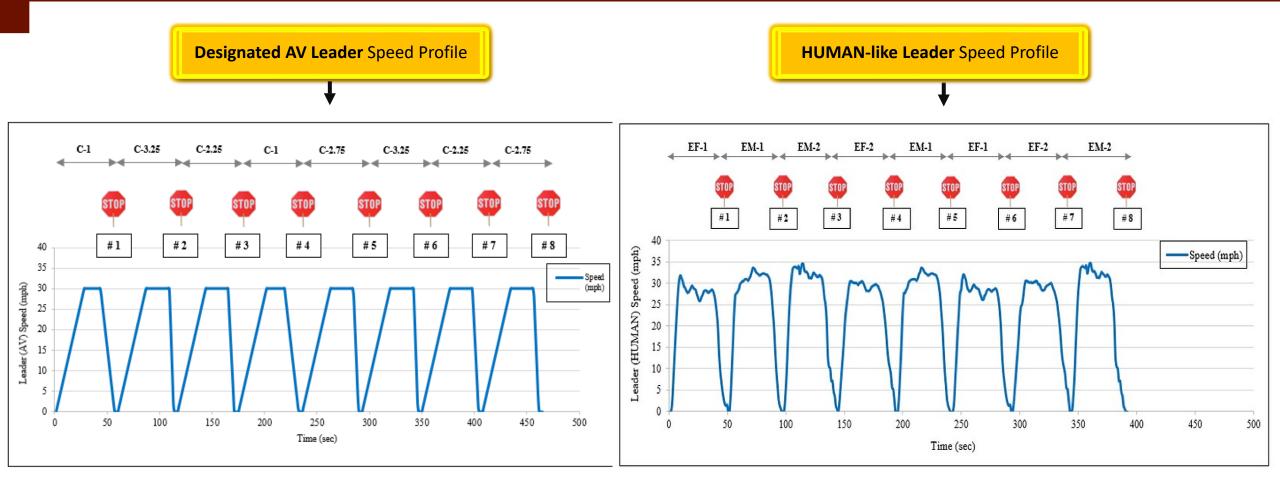

METHODOLOGY

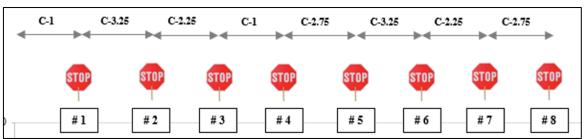

Experiment Design


Test Car-Following Scenarios

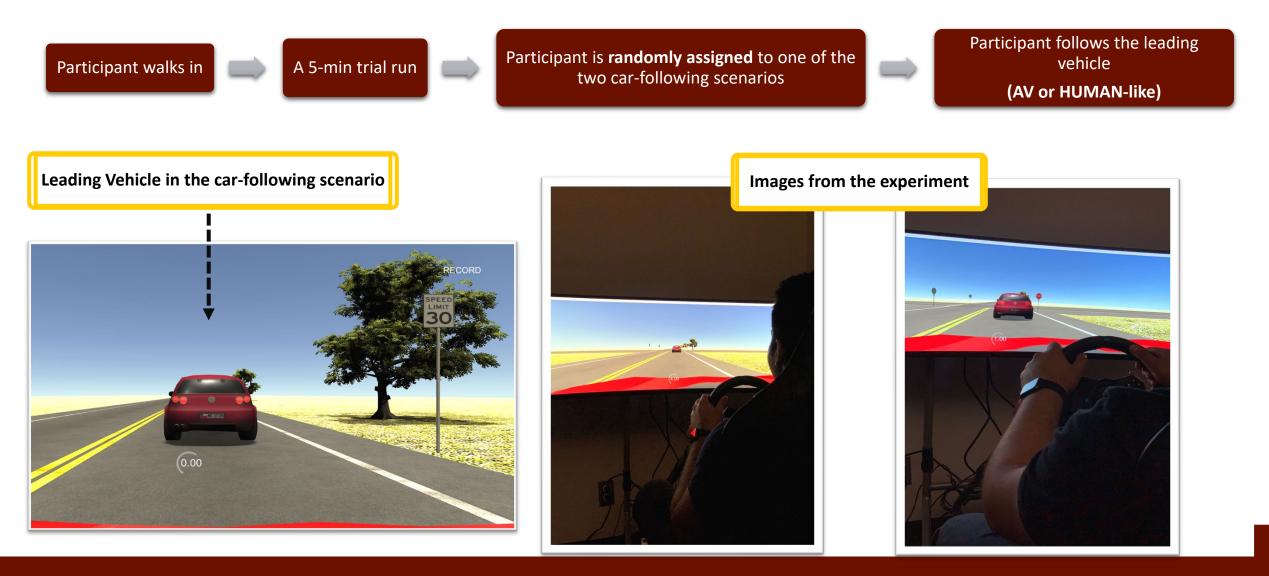


Profile	Max. Speed (mph)	Avg. Acceleration Rate (m/s²)	Max. Deceleration Rate (m/s ²)
C-1			-1
C-2.25			-2.25
C-2.75	30	0.5	-2.75
C-3.25			-3.25


Test Car-Following Scenarios



Profile	Extracted from	Max. Speed (mph)	Avg. Acceleration Rate (m/s²)	Max. Deceleration Rate (m/s²)
EF-1	Female	31.70	0.41	-2.68
EF-2	Female	30.40	0.42	-1.68
EM-1	Male	33.51	0.50	-2.38
EM-2	Male	34.47	0.46	-3.73


METHODOLOGY

- In both car-following scenarios, one test speed profile is assigned to the
 leading vehicle till it reaches a stop-controlled intersection
- After stopping at the intersection, **the profile is switched** to a different one

Experiment Procedure

Descriptive Statistics RESULTS:

Descriptive Statistics

Variables	Units	Mean	Std. Dev.	Min.	Max.
Ego Speed	mph	18.48	11.21	0	47.65
Leader Speed	mph	19.20	10.88	0	30.00
Ego Acc./Dec.	m/s²	-0.17	1.04	-8.00	3.00
Leader Acc./Dec.	m/s²	0.02	0.79	-3.25	1.00
Clearance	m	24.64	23.36	-6.77	135.53

Correlation Matrix

Variables	Ego Speed	Leader Speed	Ego Acc./Dec.	Leader Acc./Dec.	Clearance
Ego Speed					
Leader Speed	0.85				
Ego Acc./Dec.	0.18	0.28			
Leader Acc./Dec.	-0.30	-0.10	0.29		
Clearance	0.32	0.33	0.15	-0.17	

A serious (uphill) positive correlation between the participants' and the AV leader's average speed \geq

Potential reason: Participants closely following the designated AV \geq

Descriptive Statistics

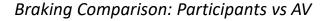
HUMAN-Human (sce

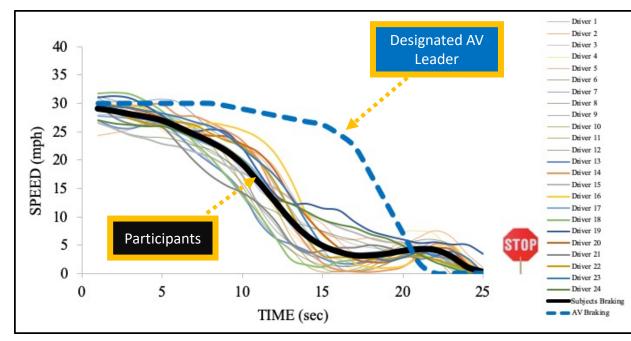
(Scenario 2)

Descriptive Statistics

Variables	Units	Mean	Std. Dev.	Min.	Max.
Ego Speed	mph	21.36	13.23	0.00	63.45
Leader Speed	mph	22.11	11.31	0.00	34.58
Ego Acc./Dec.	m/s²	-0.31	1.49	-8.00	3.00
Leader Acc./Dec.	m/s²	0.00	1.23	-8.00	3.00
Clearance	m	46.06	37.35	-1.70	139.94

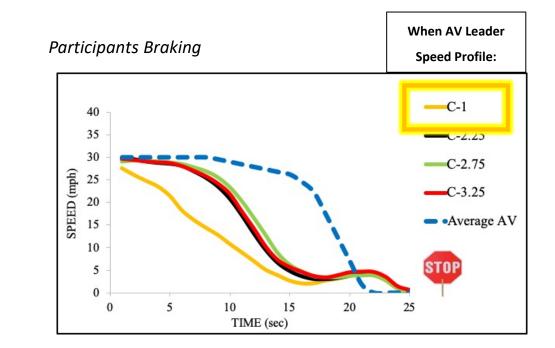
- No serious correlation between the participants' and the HUMAN-like leader's average speed
- Participants closely followed the designated AV leader (approx. half the average clearance in the other scenario)
- > Faster ego speeds while following the human-like leader


Correlation Matrix


Variables	Ego Speed	Leader Speed	Ego Acc./Dec.	Leader Acc./Dec.	Clearance
Ego Speed					
Leader Speed	0.50				
Ego Acc./Dec.	0.37	0.42			
Leader Acc./Dec.	0.14	0.24	0.27		
Clearance	-0.31	-0.13	-0.23	0.09	

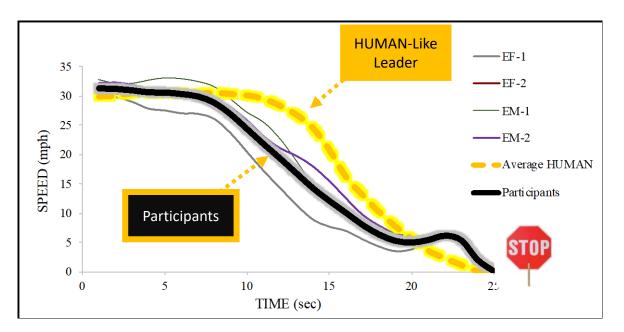
Two sample T-tests

Overall	Participants Driving in	Mean	Std. Dev.	t- value	Two- tailed p- value	Different (p < 0.05)	
Avg. Clearance	Scenario 1	24.64	23.36	40.50		Mark	
(m)	Scenario 2	46.06	37.35	48.50	< 0.0001	Yes	
Avg. Ego Speed	Scenario 1	18.48	11.21		< 0.0001		
(mph)	Scenario 2	21.36	13.23	16.22		Yes	


Braking Comparison (Scenario 1)

There is a <u>difference</u> in the average braking speeds of the participants and the designated AV

Two-tailed p-value = 0.0396* < 0.05 (t=2.10; std. error = 0.28)

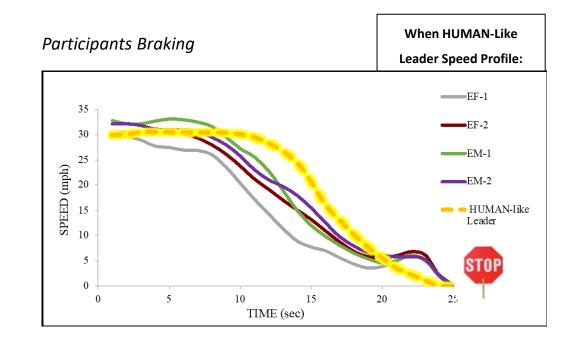


Significant difference in the braking speeds of the participants following the AV leader braking with <u>C-1 profile</u>, and the average AV.

Two-tailed p-value = 0.0007* < 0.05 (t=3.63; std. error = 2.98)

Braking Comparison (Scenario 2)

Braking Comparison: Participants vs Human-Like Leader



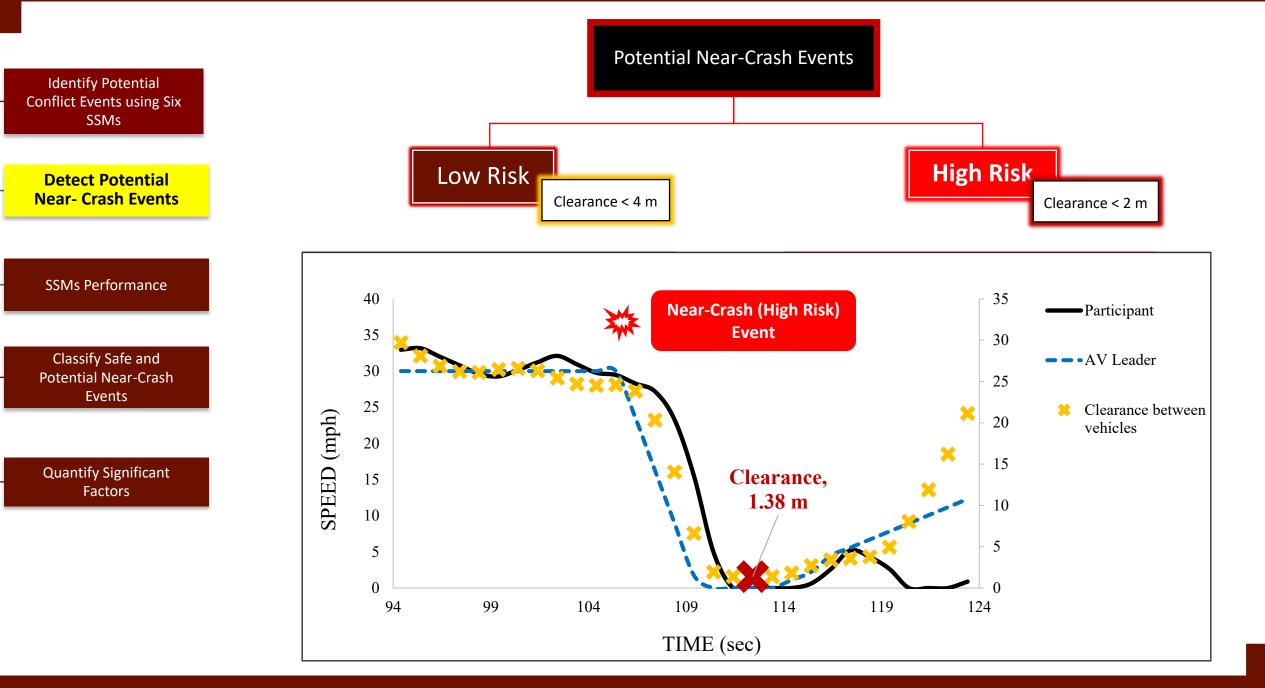
There is **no difference** in the **average braking speeds of the participants** \geq

and the HUMAN-like leader

Two-tailed p-value = **0.85 > 0.05**

Parameters	Participants Driving in	Mean	S.D.	t-value	p-value	Different (p < 0.05)
Avg. Clearance	Scenario 1	19.56	10.10	2.73	0.000	Nee
During Braking (m)	Scenario 2	30.81	17.44		0.008	Yes

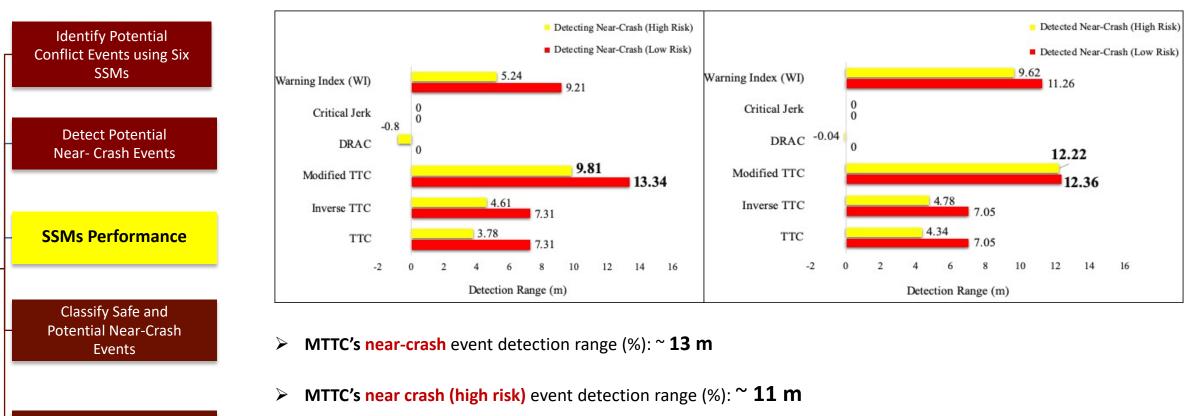
No difference in the braking speeds of the **participants**, and **the** \geq HUMAN-like leader. Two-tailed p-value = 0.0007* < 0.05

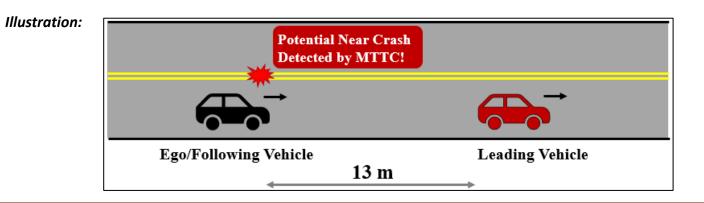

Participants in the following vehicle performed braking maneuvers behind the designated AV at relatively short clearances

Scenario 1: AV leader and Scenario 2: Human-like Leader;

 \geq

Risk Analysis


Identify Potential Conflict Events using Six SSMs	Potential Conflict Events		
Detect Potential Near-Crash Events	When the assigned threshold of any one or m car-following by the following vehicle, the	-	
SSMs Performance	Parameters	AV-Human	HUMAN-Human
Classify Safe and Potential Near-Crash Events	No. of Potential Conflict Events	670	780
	Avg. Ego Speed (mph)	18.41	23.26
Quantify Significant Factors	Avg. Leader Speed (mph)	12.51	14.69
	Avg. Ego Acceleration/Deceleration (m/s ²)	-0.65	-0.70
	Avg. Leader Acceleration/Deceleration (m/s ²)	-1.23	-0.82
	Avg. Clearance (m)	12.19	15.44


RESULTS - Risk Analysis

Near Crash Detection Range of SSMs

Identify Potential Conflict Events using Six SSMs Based on Mean Decrease Gini (*RF algorithm*) For AV-Human scenario → Most significant: Leader Acceleration/Deceleration For HUMAN-Human scenario → Most significant: Clearance between vehicles

Logistic regression on the undersampled datasets validated these findings

Logistic Regression Model:	R ²	Misclassification Rate
	0.86	0.04

Term	Estimate	Std Error	Chi Square	Prob>Chi Sq.
Intercept	0.568617	0.5313891	1.15	0.2846
Long. Position	0.00024389	0.00017	2.06	0.1514
Clearance	-0.3908231	0.0478443	66.73	<.0001*
Relative Speed	1.43818486	0.1853836	60.18	<.0001*
Ego Acc.	0.90320181	0.1866967	23.40	<.0001*
Leader Acc.	-2.4457863	0.2842191	74.05	<.0001*
Gender	0.95224009	0.4071718	5.47	0.0194*

Predictor	Contribution	Rank
Leader Acc.	50.8467	1
Relative Speed	35.1829	2
Clearance	18.0660	3
Ego Acc.	12.5391	4
Long Position	9.8693	5
Gender	2.5092	6

Derived from Undersampled data

SSMs Performance

Classify Safe and Potential Near-Crash Events

Quantify Significant Factors

Significant Factors Affecting Potential Near-Crash Classification

Significant Factors Affecting Potential Near-Crash Classification **Identify Potential** Based on Mean Decrease Gini (RF algorithm) \geq Conflict Events using Six SSMs For **AV-Human** scenario **—** Most significant: **Leader Acceleration/Deceleration** \geq For **HUMAN-Human** scenario **—** Most significant: **Clearance between vehicles Detect Potential** \triangleright Near- Crash Events Logistic regression on the undersampled datasets validated these findings \geq SSMs Performance Logistic Regression Model: R² **Misclassification Rate** 0.83 0.04 Classify Safe and Potential Near-Crash

Events

Quantify Significant Factors

Term	Estimate	Std Error	Chi Square	Prob>Chi Sq.
Intercept	1.174	0.446	6.919	0.0085*
Long Position	0.000	0.000	0.913	0.3394
Clearance	-0.296	0.033	79.949	<.0001*
Gender	0.081	0.335	0.059	0.8087
Ego Speed	0.457	0.054	70.287	<.0001*
Leader Speed	-0.431	0.052	70.116	<.0001*
Ego Acc./Dec.	0.554	0.097	32.378	<.0001*

Predictor	Contribution	Rank
Clearance	29.7922	1
Leader Acc.	23.8478	2
Leader Speed	19.2116	3
Ego Speed	14.3613	4
Ego Acc.	7.5258	5
Long. Position	3.4342	6

Derived from Undersampled data

CONCLUSIONS

- Braking behavior analysis indicated a mismatch in the overall braking pattern of the participants and the designated AV leader. However, no such mismatch between the participants and the human-like leader.
- Participants accelerated at much faster rates (1.25 m/s²) after stopping at the stop-controlled intersections than the designated AV (0.5 m/s²). These rates resembled the rates when the participants followed the human-like leader.
- MTTC outperformed other five SSMs by anticipating the near-crashes 10 seconds before their occurrence at a range of ~13 m in the two car-following test scenarios.
- Participants in Scenario 1 were more likely to be involved in near-crashes involving high risk (145) with the designated AV leader than with the human-like leader in Scenario 2 (112).
- The participants showed a higher tendency of near-crash involvement while following the AV leader designated with C-3.25 profile and the human-like leader with EF-2 profile.
- **RF classifiers on the undersampled data** achieved the highest accuracy rates in predicting and classifying the potential near-crash events.
- AV leader's acceleration/deceleration in Scenario 1, and clearance between vehicles in Scenario 2 emerged as the most significant in potential near crash events classification

Thank you!

I

Questions?