Examining the safety effects of mixed-traffic with automated and human-driven vehicles

TexITE Houston Chapter

INTRODUCTION

What is an Autonomous Vehicle (AV) ?

$>$ Also called self-driving or driverless cars
$>$ Cars that can move and guide itself without human input

- Example: Google's Waymo, which is a fully autonomous hybrid-minivan

Google's Waymo Autonomous Car

Potential Benefits of AVs

$>$ Increased safety - Approximately 1.2 million people die in traffic accidents every year as 90% of serious crashes occur due to human error.
$>$ Better mobility and less traffic - Autonomous cars can communicate with one and another and identify the most optimal route which could reduce congestion.
$>$ Reduced costs - A NHTSA study showed motor vehicle crashes in 2010 cost $\$ 242$ billion. Eliminating the vast majority of motor

INTRODUCTION

How will safety be affected before we get to fully automated vehicles?
https://innovationatwork.ieee.org/autonomous-vehicles-for-today-and-for-the-future/

Automated Vehicles Safety

Why People Keep Rear-Ending Self-Driving Cars

Human drivers (and one cyclist) have rear-ended self-driving cars 28 times this year in California-accounting for nearly two-thirds of robocar crashes.

In California alone, self-driving cars heve been iivolved in nearyy 50 crashes so fer in 2018 . Why are so many of them rear-ended? ANorei stanescu/aLaMr
https://www.wired.com/story/self-driving-car-crashes-rear-endings-why-charts-statistics/

Automated Vehicles Safety

Transportation Research Procedia
Volume 45, 2020, Pages 161-168

Traffic Accidents with Autonomous Vehicles: Type of Collisions, Manoeuvres and Errors of Conventional Vehicles' Drivers

```
Đorđe Petrovićc}\mp@subsup{}{}{3}|,\mp@code{Radomir Mijailovića}\mp@subsup{}{}{\mathrm{ a,}}\mathrm{ , Dalibor Pešića
Show more \vee
+ Add to Mendeley &o Share 5% Cite
```

Applying statistical analysis, we were found that the type of collision "rear-end" more often in traffic accidents with autonomous vehicles. Types of collisions "pedestrian" and "broadside" were less in traffic accidents with autonomous vehicles.

Automated Vehicles Safety

-Waymo reported 11 actual rear-end collisions involving its cars and one simulated collision. In eight of the actual collisions, another car struck a Waymo car while it was stopped; in two of the actual collisions, another car struck a Waymo car moving at slow speeds; and in one of the actual collisions, another car struck a Waymo car while it was decelerating. The simulated collision modeled a Waymo car striking a decelerating car.

Level of Automation

The Five Levels of Autonomous Driving

PROBLEM STATEMENT

To investigate if there is any mismatch between human drivers' expectations and AVs

 decisions in a car-following scenario at stop-controlled intersections
Project Objectives:

* Examine the braking behavior of participants in the following vehicle behind two different types of lead vehicles (designated AV and Human-like) while stopping at a stop-controlled intersection.
* Analyze the acceleration behavior of test participants and the two kinds of leading vehicles after stopping at the stop-controlled intersection.
* Evaluate the performance of popular Surrogate Safety Measures (SSMs) in detecting potential near-crash events (low and high risk).
* Classify the potential near-crash events from the safe events using a random forest classifier for two different data sampling techniques and examine significant factors influencing near-crashes.

METHODOLOGY

Experiment Design

Test Car-Following Scenarios

Profile	Max. Speed (mph)	Avg. Acceleration Rate $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Max. Deceleration Rate $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
C-1			-1
C-2.25			-2.25
C-2.75		0.5	-2.75
C-3.25			-3.25

Test Car-Following Scenarios

Profile	Extracted from	Max. Speed (mph)	Avg. Acceleration Rate $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	Max. Deceleration Rate $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
EF-1	Female	31.70	0.41	-2.68
EF-2	Female	30.40	0.42	
EM-1	Male	33.51	0.50	-1.68
EM-2	Male	34.47	0.46	-2.38

* In both car-following scenarios, one test speed profile is assigned to the leading vehicle till it reaches a stop-controlled intersection
* After stopping at the intersection, the profile is switched to a different one

Experiment Procedure

Participant is randomly assigned to one of the two car-following scenarios

Participant follows the leading vehicle (AV or HUMAN-like)

RESULTS: Descriptive Statistics

AV-Human (Scenario 1)

Descriptive Statistics

Variables	Units	Mean	Std. Dev.	Min.	Max.
Ego Speed	mph	$\mathbf{1 8 . 4 8}$	11.21	0	47.65
Leader Speed	mph	$\mathbf{1 9 . 2 0}$	10.88	0	30.00
Ego Acc./Dec.	$\mathrm{m} / \mathrm{s}^{2}$	-0.17	1.04	-8.00	3.00
Leader Acc./Dec.	$\mathrm{m} / \mathrm{s}^{2}$	0.02	0.79	-3.25	1.00
Clearance	m	$\mathbf{2 4 . 6 4}$	$\mathbf{2 3 . 3 6}$	-6.77	135.53

Correlation Matrix

Variables	Ego Speed	Leader Speed	Ego Acc./Dec.	Leader Acc./Dec.	Clearance
Ego Speed					
Leader Speed	$\mathbf{0 . 8 5}$				
Ego Acc./Dec.	0.18	0.28			
Leader Acc./Dec.	-0.30	-0.10	0.29		
Clearance	0.32	0.33	0.15	-0.17	

$>$ A serious (uphill) positive correlation between the participants' and the AV leader's average speed
> Potential reason: Participants closely following the designated AV

Descriptive Statistics

HUMAN-Human (scenario 2)

Descriptive Statistics

Variables	Units	Mean	Std. Dev.	Min.	Max.
Ego Speed	mph	$\mathbf{2 1 . 3 6}$	13.23	0.00	63.45
Leader Speed	mph	$\mathbf{2 2 . 1 1}$	11.31	0.00	34.58
Ego Acc./Dec.	$\mathrm{m} / \mathrm{s}^{2}$	-0.31	1.49	-8.00	3.00
Leader Acc./Dec.	$\mathrm{m} / \mathrm{s}^{2}$	0.00	1.23	-8.00	3.00
Clearance	m	$\mathbf{4 6 . 0 6}$	37.35	-1.70	139.94

$>$ No serious correlation between the participants' and the HUMAN-like leader's average speed
$>$ Participants closely followed the designated AV leader (approx. half the average clearance in the other scenario)
> Faster ego speeds while following the human-like leader

Correlation Matrix

Variables	Ego Speed	Leader Speed	Ego Acc./Dec.	Leader Acc./Dec.	Clearance
Ego Speed					
Leader Speed	$\mathbf{0 . 5 0}$				
Ego Acc./Dec.	0.37	0.42			
Leader Acc./Dec.	0.14	0.24	0.27		
Clearance	-0.31	-0.13	-0.23	0.09	

Two sample T-tests

Overall	Participants Driving in	Mean	Std. Dev.	$\begin{gathered} \text { t- } \\ \text { value } \end{gathered}$	Twotailed pvalue	$\begin{aligned} & \text { Different (p < } \\ & 0.05 \text {) } \end{aligned}$
Avg. Clearance (m)	Scenario 1	24.64	23.36	48.50	< 0.0001	Yes
	Scenario 2	46.06	37.35			
Avg. Ego Speed (mph)	Scenario 1	18.48	11.21	16.22	< 0.0001	Yes
	Scenario 2	21.36	13.23			

Braking Comparison (Scenario 1)

Braking Comparison: Participants vs AV

$>$ There is a difference in the average braking speeds of the participants and the designated AV

$>$ Significant difference in the braking speeds of the participants following the AV leader braking with C-1 profile, and the average AV.

Two-tailed p-value $=0.0007^{*}<0.05(t=3.63 ; s t d$. error $=2.98)$

Braking Comparison (Scenario 2)

Braking Comparison: Participants vs Human-Like Leader

> There is no difference in the average braking speeds of the participants and the HUMAN-like leader \quad Two-tailed p-value $=0.85 \mathbf{~} 0.05$

Parameters	Participants Driving in	Mean	S.D.	t-value	p-value	Different $(\mathbf{p}<\mathbf{0 . 0 5)}$
Avg. Clearance During Braking (\mathbf{m})	Scenario 1	$\mathbf{1 9 . 5 6}$	10.10			
Scenario 2	$\mathbf{3 0 . 8 1}$	17.44	2.73	0.008	Yes	

No difference in the braking speeds of the participants, and the HUMAN-like leader. \quad Two-tailed p-value $=0.0007^{*}<\mathbf{0 . 0 5}$

Risk Analysis

Identify Potential Conflict Events using Six SSMs

Detect Potential Near-Crash Events SSMs Performance

Quantify Significant Factors

Potential Conflict Events

When the assigned threshold of any one or more surrogate measures gets violated at any time instant of car-following by the following vehicle, the instant is characterized as a 'Potential Conflict Event'

Parameters	AV-Human	HUMAN-Human
No. of Potential Conflict Events	670	780
Avg. Ego Speed (mph)	$\mathbf{1 8 . 4 1}$	$\mathbf{2 3 . 2 6}$
Avg. Leader Speed (mph)	$\mathbf{1 2 . 5 1}$	$\mathbf{1 4 . 6 9}$
Avg. Ego Acceleration/Deceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	-0.65	-0.70
Avg. Leader Acceleration/Deceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	-1.23	-0.82
Avg. Clearance (m)	$\mathbf{1 2 . 1 9}$	$\mathbf{1 5 . 4 4}$

Potential Near-Crash Events

Classify Safe and Potential Near-Crash

Events

Detect Potential Near- Crash Events

Classify Safe and
Potential Near-Crash
Events

Near-Crashes	AV-Human	HUMAN-Human
	378	406

Near-Crashes	Males	Females
All	342	442
High Risk	88	171

$>$ Allocating the AV leader with C-3.25 profile in scenario 1 led to the highest number of near-crashes (high risk) events
> A similar count was seen when the HUMAN-like leader was driving with EF-2 profile ahead of the participants

Identify Potential Conflict Events using Six SSMs

Detect Potential Near- Crash Events

SSMs Performance

Classify Safe and Potential Near-Crash

Events

Quantify Significant Factors

Near Crash Detection Range of SSMs

> MTTC's near-crash event detection range (\%): ~ 13 m
> MTTC's near crash (high risk) event detection range (\%): ~ $11 \mathbf{m}$

Illustration:

Significant Factors Affecting Potential Near-Crash Classification

Identify Potential Conflict Events using Six SSMs

Detect Potential Near- Crash Events

SSMs Performance

Classify Safe and Potential Near-Crash Events

Quantify Significant Factors
> Based on Mean Decrease Gini (RF algorithm)
$>$ For HUMAN-Human scenario \longrightarrow Most significant: Clearance between vehicles
> Logistic regression on the undersampled datasets validated these findings

Logistic Regression Model:

$\mathbf{R}^{\mathbf{2}}$	Misclassification Rate
0.86	0.04

Term	Estimate	Std Error	Chi Square	Prob>Chi Sq.
Intercept	0.568617	0.5313891	1.15	0.2846
Long. Position	0.00024389	0.00017	2.06	0.1514
Clearance	-0.3908231	0.0478443	66.73	$<.0001^{*}$
Relative Speed	1.43818486	0.1853836	60.18	$<.0001^{*}$
Ego Acc.	0.90320181	0.1866967	23.40	$<.0001^{*}$
Leader Acc.	-2.4457863	0.2842191	74.05	$<.0001^{*}$
Gender	0.95224009	0.4071718	5.47	0.0194^{*}

Predictor	Contribution	Rank
Leader Acc.	50.8467	1
Relative Speed	35.1829	2
Clearance	18.0660	3
Ego Acc.	12.5391	4
Long Position	9.8693	5
Gender	2.5092	6

Significant Factors Affecting Potential Near-Crash Classification

Identify Potential Conflict Events using Six SSMs

Detect Potential Near- Crash Events

SSMs Performance

Classify Safe and
Potential Near-Crash
Events

Quantify Significant Factors
> Based on Mean Decrease Gini (RF algorithm)
> For AV-Human scenario \longrightarrow Most significant: Leader Acceleration/Deceleration
For HUMAN-Human scenario \longrightarrow Most significant: Clearance between vehicles
> Logistic regression on the undersampled datasets validated these findings

Logistic Regression Model:

$\mathbf{R}^{\mathbf{2}}$	Misclassification Rate
0.83	0.04

Term	Estimate	Std Error	Chi Square	Prob>Chi Sq.
Intercept	1.174	0.446	6.919	0.0085^{*}
Long Position	0.000	0.000	0.913	0.3394
Clearance	-0.296	0.033	79.949	$<.0001^{*}$
Gender	0.081	0.335	0.059	0.8087
Ego Speed	0.457	0.054	70.287	$<.0001^{*}$
Leader Speed	-0.431	0.052	70.116	$<.0001^{*}$
Ego Acc./Dec.	0.554	0.097	32.378	$<.0001^{*}$

Predictor	Contribution	Rank
Clearance	29.7922	1
Leader Acc.	23.8478	2
Leader Speed	19.2116	3
Ego Speed	14.3613	4
Ego Acc.	7.5258	5
Long. Position	3.4342	6

CONCLUSIONS

* Braking behavior analysis indicated a mismatch in the overall braking pattern of the participants and the designated AV leader. However, no such mismatch between the participants and the human-like leader.
* Participants accelerated at much faster rates ($1.25 \mathrm{~m} / \mathrm{s}^{2}$) after stopping at the stop-controlled intersections than the designated AV (0.5 $\mathrm{m} / \mathrm{s}^{2}$). These rates resembled the rates when the participants followed the human-like leader.
* MTTC outperformed other five SSMs by anticipating the near-crashes 10 seconds before their occurrence at a range of $\sim 13 \mathrm{~m}$ in the two car-following test scenarios.
* Participants in Scenario 1 were more likely to be involved in near-crashes involving high risk (145) with the designated AV leader than with the human-like leader in Scenario 2 (112).
* The participants showed a higher tendency of near-crash involvement while following the AV leader designated with C-3.25 profile and the human-like leader with EF-2 profile.
* RF classifiers on the undersampled data achieved the highest accuracy rates in predicting and classifying the potential near-crash events.
* AV leader's acceleration/deceleration in Scenario 1, and clearance between vehicles in Scenario 2 emerged as the most significant in potential near crash events classification

Thank you!

